Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cryst Growth Des ; 24(1): 391-404, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38188269

RESUMEN

Hybrid organic-inorganic perovskites exhibit remarkable potential as cost-effective and high-efficiency materials for photovoltaic applications. Their exceptional chemical tunability opens further routes for optimizing their optical and electronic properties through structural engineering. Nevertheless, the extraordinary softness of the lattice, stemming from its interconnected organic-inorganic composition, unveils formidable challenges in structural characterization. Here, by focusing on the quintessential methylammonium lead triiodide, MAPbI3, we combine first-principles modeling with high-resolution neutron scattering data to identify the key stationary points on its shallow potential energy landscape. This combined experimental and computational approach enables us to benchmark the performance of a collection of semilocal exchange-correlation functionals and to track the local distortions of the perovskite framework, hallmarked by the inelastic neutron scattering response of the organic cation. By conducting a thorough examination of structural distortions, we introduce the IKUR-PVP-1 structural data set. This data set contains nine mechanically stable structural models, each manifesting a distinct vibrational response. IKUR-PVP-1 constitutes a valuable resource for assessing thermal behavior in the low-temperature perovskite phase. In addition, it paves the way for the development of accurate force fields, enabling a comprehensive understanding of the interplay between the structure and dynamics in MAPbI3 and related hybrid perovskites.

2.
J Phys Chem Lett ; 13(36): 8422-8428, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36069450

RESUMEN

Hybrid perovskites continue to attract an enormous amount of attention, yet a robust microscopic picture of their different phases as well as the extent and nature of the disorder present remains elusive. Using specific-heat data along with high-resolution inelastic neutron scattering and ab initio modeling, we address this ongoing challenge for the case of the ordered phase of the quintessential hybrid-perovskite MAPbI3. At low temperatures, the specific heat of MAPbI3 reveals strong deviations from the Debye limit, a common feature of pure hybrid perovskites and their mixtures. Our thermophysical analysis demonstrates that the (otherwise ordered) structure around the organic moiety is characterized by a substantial lowering of the local symmetry relative to what can be inferred from crystallographic studies. The physical origin of the observed thermophysical anomalies is unequivocally linked to excitations of sub-terahertz optical phonons responsible for translational-librational distortions of the octahedral units.

3.
Anal Chem ; 94(12): 5023-5028, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35298136

RESUMEN

The limits of detection (LOD) and quantitation (LOQ) in the mass domain, for broadband vibrational spectroscopy with neutrons on the TOSCA spectrometer at the ISIS Pulsed Neutron and Muon Source (UK), have been studied. The well-known 3σ and 10σ approaches are used through a specifically developed analytical procedure that is based on the calculation of the integrated spectral intensities in selected energy-transfer ranges, as a function of mass of standard reference materials and calibrants, such as ZrH2, 2,5-diiodothiophene, and low-density polyethylene. The analysis shows that the blank, that is, the instrument setup without the analyte, plays a critical role in the measurement performance, especially for small specimen quantities. The results point that TOSCA enables detection of 128 µmol (LODH) and quantitation of 428 µmol (LOQH) of elemental hydrogen analytes in ZrH2. The determined values for this and other standards allow for the assessment of the calibration curve design and instrument sensitivity and define a method to be used for inelastic neutron scattering spectrometers such as TOSCA, or VESPA, the new beamline under construction at the European Spallation Source in Lund (Sweden).


Asunto(s)
Hidrógeno , Neutrones , Calibración , Límite de Detección , Análisis Espectral
4.
J Phys Chem C Nanomater Interfaces ; 125(44): 24463-24476, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795809

RESUMEN

Diethylammonium nitrate, [N0 0 2 2][NO3], and its perdeuterated analogue, [N D D 2 2] [NO3], were structurally characterized and studied by infrared, Raman, and inelastic neutron scattering (INS) spectroscopy. Using these experimental data along with state-of-the-art computational materials modeling, we report unambiguous spectroscopic signatures of hydrogen-bonding interactions between the two counterions. An exhaustive assignment of the spectral features observed with each technique has been provided, and a number of distinct modes related to NH···O dynamics have been identified. We put a particular emphasis on a detailed interpretation of the high-resolution, broadband INS experiments. In particular, the INS data highlight the importance of conformational degrees of freedom within the alkyl chains, a ubiquitous feature of ionic liquid (IL) systems. These findings also enable an in-depth physicochemical understanding of protonic IL systems, a first and necessary step to the tailoring of hydrogen-bonding networks in this important class of materials.

5.
Polymers (Basel) ; 13(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947108

RESUMEN

This work provides an up-to-date overview of recent developments in neutron spectroscopic techniques and associated computational tools to interrogate the structural properties and dynamical behavior of complex and disordered materials, with a focus on those of a soft and polymeric nature. These have and continue to pave the way for new scientific opportunities simply thought unthinkable not so long ago, and have particularly benefited from advances in high-resolution, broadband techniques spanning energy transfers from the meV to the eV. Topical areas include the identification and robust assignment of low-energy modes underpinning functionality in soft solids and supramolecular frameworks, or the quantification in the laboratory of hitherto unexplored nuclear quantum effects dictating thermodynamic properties. In addition to novel classes of materials, we also discuss recent discoveries around water and its phase diagram, which continue to surprise us. All throughout, emphasis is placed on linking these ongoing and exciting experimental and computational developments to specific scientific questions in the context of the discovery of new materials for sustainable technologies.

6.
J Phys Chem Lett ; 12(14): 3503-3508, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33792334

RESUMEN

The vibrational dynamics of pure and methylammonium-doped formamidinium lead iodide perovskites (FAPbI3) has been investigated by high-resolution neutron spectroscopy. For the first time, we provide an exhaustive and accurate analysis of the cation vibrations and underlying local structure around the organic moiety in these materials using first-principles electronic-structure calculations validated by the neutron data. Inelastic neutron scattering experiments on FAPbI3 provide direct evidence of the formation of a low-temperature orientational glass, unveiling the physicochemical origin of phase metastability in the tetragonal structure. Further analysis of these data provides a suitable starting point to explore and understand the stabilization of the perovskite framework via doping with small amounts of organic cations. In particular, we find that the hydrogen-bonding interactions around the formamidinium cations are strengthened as a result of cage deformation. This synergistic effect across perovskite cages is accompanied by a concomitant weakening of the methylammonium interactions with the surrounding framework.

7.
J Phys Chem Lett ; 11(3): 1106-1111, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31972078

RESUMEN

The recent discovery of a low-temperature endotherm upon heating hydrochloric-acid-doped ice VI has sparked a vivid controversy. The two competing explanations aiming to explain its origin range from a new distinct crystalline phase of ice to deep-glassy states of the well-known ice VI. Problems with the slow kinetics of deuterated phases have been raised, which we circumvent here entirely by simultaneously measuring the inelastic neutron spectra and neutron diffraction data of H2O samples. These measurements support the deep-glassy ice VI scenario and rule out alternative explanations. Additionally, we show that the crystallographic model of D2O ice XV, the ordered counterpart of ice VI, also applies to the corresponding H2O phase. The discovery of deep-glassy ice VI now provides a fascinating new example of ultrastable glasses that are encountered across a wide range of other materials.

8.
Analyst ; 144(13): 3936-3941, 2019 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-31041932

RESUMEN

This work introduces the use of mass-selective neutron spectroscopy as an analytical tool for the quantitative and non-destructive detection of hydrogen in bulk media. To this end, systematic measurements have been performed on a series of polyethylene standards of known thickness and density, in order to establish optimal data-acquisition protocols as well as associated limits of detection and quantitation. From this analysis, we conclude that state-of-the-art epithermal-neutron instrumentation enables the detection of aeral molar densities of bulk hydrogen in the µmol cm-2 range. We also discuss potential improvements on the horizon, with a view to broadening the scope of the technique across chemistry, materials science, and engineering.

9.
Phys Chem Chem Phys ; 19(48): 32216-32225, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29131205

RESUMEN

A detailed study of the thermal behaviour of atomic motions in the organic ferroelectric croconic acid is presented in the temperature range 5-300 K. Using high-resolution inelastic neutron scattering and first-principles electronic-structure calculations within the framework of density functional theory and a quasiharmonic phonon description of the material, we find that the frequencies of the well defined doublet in inelastic neutron scattering spectra associated with out-of-plane motions of hydrogen-bonded protons decrease monotonically with temperature indicating weakening of these bonding motifs and enhancement of proton motions. Theoretical mean-square displacements for these proton motions are within 5% of experimental values. A detailed analysis of this observable shows that it is unlikely that there is a facile proton transfer along the direction of ferroelectric polarization in the absence of an applied electric field. Calculations predict constrained thermal motion of proton along crystallographic lattice direction c retaining the hydrogen bond motif of the crystal at high temperature. Using the Berry-phase method, we have also calculated the spontaneous polarization of temperature dependent cell structures, and find that our computational model provides a satisfactory description of the anomalous and so far unexplained rise in bulk electric polarization with temperature. Correlating the thermal motion induced lattice strain with temperature dependent spontaneous polarizations, we conclude that increasing thermal strain with temperatures combined with constrained thermal motion along the hydrogen bond motif are responsible of this increase in ferroelectricity at high temperature.

10.
Phys Rev Lett ; 118(25): 255502, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696751

RESUMEN

We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (∼100 cm^{-1}), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO(O_{2}C-C_{6}H_{4}-CO_{2})]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (G_{min}).

11.
Phys Chem Chem Phys ; 19(13): 9064-9074, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28304035

RESUMEN

We apply a unique sequence of structural and dynamical neutron-scattering techniques, augmented with density-functional electronic-structure calculations, to establish the degree of polymorphism in an archetypal hydrogen-bonded system - crystalline formic acid. Using this combination of experimental and theoretical techniques, the hypothesis by Zelsmann on the coexistence of the ß1 and ß2 phases above 220 K is tested. Contrary to the postulated scenario of proton-transfer-driven phase coexistence, the emerging picture is one of a quantitatively different structural change over this temperature range, whereby the loosening of crystal packing promotes temperature-induced shearing of the hydrogen-bonded chains. The presented work, therefore, solves a fifty-year-old puzzle and provides a suitable framework for the use neutron-Compton-scattering techniques in the exploration of phase polymorphism in condensed matter.

12.
J Phys Chem Lett ; 7(22): 4701-4709, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27804302

RESUMEN

High-resolution inelastic neutron scattering and extensive first-principles calculations have been used to explore the low-temperature phase of the hybrid solar-cell material methylammonium lead iodide up to the well-known phase transition to the tetragonal phase at ca. 160 K. Contrary to original expectation, we find that the Pnma structure for this phase can only provide a qualitative description of the geometry and underlying motions of the organic cation. A substantial lowering of the local symmetry inside the perovskite cage leads to an improved atomistic model that can account for all available spectroscopic and thermodynamic data, both at low temperatures and in the vicinity of the aforementioned phase transition. Further and detailed analysis of the first-principles calculations reveals that large-amplitude distortions of the inorganic framework are driven by both zero-point-energy fluctuations and thermally activated cation motions. These effects are significant down to liquid-helium temperatures. For this important class of technological materials, this work brings to the fore the pressing need to bridge the gap between the long-range order seen by crystallographic methods and the local environment around the organic cation probed by neutron spectroscopy.

13.
Phys Chem Chem Phys ; 18(29): 19894-901, 2016 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-27397622

RESUMEN

We investigate using non-equilibrium molecular dynamics simulations the polarization of water induced by thermal gradients using the accurate TIP4P/2005 water model. The full dependence of the polarization covering a wide range of thermodynamic states, from near supercritical to ambient conditions, is reported. Our results show a strong dependence of the thermo-polarization field with the thermodynamic state. The field features a strong enhancement near the critical point, which can be rationalized in terms of the large increase and ultimately the divergence of the thermal expansion of the fluid at the critical temperature. We also show that the TIP4P/2005 model features a reversal in the sign of the thermal polarization at densities ∼1 g cm(-3). The latter result is consistent with the recent observation of this reversal phenomenon in SPC/E water and points the existence of this general physical phenomenon in water.

14.
Phys Chem Chem Phys ; 18(26): 17202-9, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27087579

RESUMEN

We address the question as to whether the melting of chemically substituted fullerenes is driven by the dynamics of the fullerene moiety (the head) or the substituted sub-unit (the tail). To this end, we have performed quasielastic neutron-scattering experiments and classical molecular-dynamics simulations as a function of temperature on the prototypical fullerene derivative phenyl-C61-butyric acid methyl ester. To enable a direct and quantitative comparison between experimental and simulation data, dynamic structure factors for the latter have been calculated from atomic trajectories and further convolved with the known instrument response. A detailed analysis of the energy- and momentum-transfer dependence of this observable in the quasielastic regime shows that melting is entirely driven by temperature-activated tail motions. We also provide quantitative estimates of the activation energy for this process as the material first enters a plastic-crystalline phase, followed by the emergence of a genuine liquid at higher temperatures.

15.
Phys Chem Chem Phys ; 18(5): 3975-81, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26771030

RESUMEN

We use Bayesian inference methods to provide fresh insights into the sub-nanosecond dynamics of glycerol, a prototypical glass-forming liquid. To this end, quasielastic neutron scattering data as a function of temperature have been analyzed using a minimal set of underlying physical assumptions. On the basis of this analysis, we establish the unambiguous presence of three distinct dynamical processes in glycerol, namely, translational diffusion of the molecular centre of mass and two additional localized and temperature-independent modes. The neutron data also provide access to the characteristic length scales associated with these motions in a model-independent manner, from which we conclude that the faster (slower) localized motions probe longer (shorter) length scales. Careful Bayesian analysis of the entire scattering law favors a heterogeneous scenario for the microscopic dynamics of glycerol, where molecules undergo either the faster and longer or the slower and shorter localized motions.

16.
Phys Chem Chem Phys ; 17(46): 31287-96, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26549527

RESUMEN

High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

17.
Phys Rev Lett ; 113(21): 215502, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25479503

RESUMEN

We present an unambiguous identification of low-frequency terahertz vibrations in the archetypal imidazole-based metal-organic framework (MOF) materials: ZIF-4, ZIF-7, and ZIF-8, all of which adopt a zeolite-like nanoporous structure. Using inelastic neutron scattering and synchrotron radiation far-infrared absorption spectroscopy, in conjunction with density functional theory (DFT), we have pinpointed all major sources of vibrational modes. Ab initio DFT calculations revealed the complex nature of the collective THz modes, which enable us to establish detailed correlations with experiments. We discover that low-energy conformational dynamics offers multiple pathways to elucidate novel physical phenomena observed in MOFs. New evidence demonstrates that THz modes are intrinsically linked, not only to anomalous elasticity underpinning gate-opening and pore-breathing mechanisms, but also to shear-induced phase transitions and the onset of structural instability.

18.
Phys Chem Chem Phys ; 16(47): 26234-9, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25363424

RESUMEN

First-principles molecular dynamics simulations and neutron-scattering experiments have been employed to investigate the structure and underlying vibrational motions in croconic acid as a function of temperature over the range 4-400 K. Calculated hydroxyl-bond distances were within 4% of the experimentally determined bond lengths. Temperature-dependent structures have been explored using large-scale molecular dynamics simulations. From the calculated radial distribution functions, it is found that medium-range order associated with O···H and O···O correlations are affected by an increase in temperature, yet the characteristic long-range layered structure of this material remains unaltered. Hydrogen-bond anharmonicity has been assessed from the molecular dynamics simulations, showing a red shift of ca. 50 cm(-1) of the O-H stretch frequency relative to quasi-harmonic results. This shift shows the importance of anharmonic corrections on hydrogen bonds in solid croconic acid.

19.
J Phys Condens Matter ; 24(42): 424216, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23032994

RESUMEN

The accurate description of van der Waals forces within density functional theory is currently one of the most active areas of research in computational physics and chemistry. Here we report results on the structural and energetic properties of graphite and hexagonal boron nitride, two layered materials where interlayer binding is dominated by van der Waals forces. Results from several density functionals are reported, including the optimized Becke88 van der Waals (optB88-vdW) and the optimized PBE van der Waals (optPBE-vdW) (Klimes et al 2010 J. Phys.: Condens. Matter 22 022201) functionals. Where comparison to experiment and higher-level theory is possible, the results obtained from the two new van der Waals density functionals are in good agreement. An analysis of the physical nature of the interlayer binding in both graphite and hexagonal boron nitride is also reported.


Asunto(s)
Compuestos de Boro/química , Grafito/química , Interacciones Hidrofóbicas e Hidrofílicas , Teoría Cuántica , Absorción , Simulación por Computador , Termodinámica
20.
ACS Macro Lett ; 1(5): 550-554, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607059

RESUMEN

In this work, high-resolution inelastic neutron scattering (INS) has been used to provide novel insights into the properties of confined poly(ethylene oxide) (PEO) chains. Two limits have been explored in detail, namely, single-layer 2D-polymer intercalation into graphite oxide (GO) and surface polymer adsorption onto thermally reduced and exfoliated graphite oxide, that is, graphene (G) sheets. Careful control over the degree of GO oxidation and exfoliation reveals three distinct cases of spatial confinement: (i) subnanometer 2D-confinement; (ii) frustrated absorption; and (iii) surface immobilization. Case (i) results in drastic changes to PEO conformational (800-1000 cm-1) and collective (200-600 cm-1) vibrational modes as a consequence of a preferentially planar zigzag (trans-trans-trans) chain conformation in the confined polymer phase. These changes give rise to peculiar thermodynamic behavior, whereby confined PEO chains are unable to either crystallize or display a calorimetric glass transition. In case (ii), GO is thermally reduced resulting in a disordered pseudo-graphitic structure. As a result, we observe minimal PEO absorption owing to a dramatic reduction in the abundance of hydrophilic groups inside the distorted graphitic galleries. In case (iii), the INS data unequivocally show that PEO chains adsorb firmly onto the G sheets, with a substantial increase in the population of gauche conformers. Well-defined glass and melting transitions associated with the confined polymer phase are recovered in case (iii), albeit at significantly lower temperatures than those of the bulk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...