Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1408451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828264

RESUMEN

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.


Asunto(s)
Vesículas Extracelulares , Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Bazo , Vesículas Extracelulares/metabolismo , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Humanos , Bazo/metabolismo , Bazo/parasitología , Malaria Vivax/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eritrocitos/parasitología , Eritrocitos/metabolismo , Fibroblastos/parasitología , Fibroblastos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/fisiología , Adhesión Celular , Interacciones Huésped-Parásitos
2.
J Extracell Biol ; 2(10): e117, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939734

RESUMEN

Parasites are responsible for the most neglected tropical diseases, affecting over a billion people worldwide (WHO, 2015) and accounting for billions of cases a year and responsible for several millions of deaths. Research on extracellular vesicles (EVs) has increased in recent years and demonstrated that EVs shed by pathogenic parasites interact with host cells playing an important role in the parasite's survival, such as facilitation of infection, immunomodulation, parasite adaptation to the host environment and the transfer of drug resistance factors. Thus, EVs released by parasites mediate parasite-parasite and parasite-host intercellular communication. In addition, they are being explored as biomarkers of asymptomatic infections and disease prognosis after drug treatment. However, most current protocols used for the isolation, size determination, quantification and characterization of molecular cargo of EVs lack greater rigor, standardization, and adequate quality controls to certify the enrichment or purity of the ensuing bioproducts. We are now initiating major guidelines based on the evolution of collective knowledge in recent years. The main points covered in this position paper are methods for the isolation and molecular characterization of EVs obtained from parasite-infected cell cultures, experimental animals, and patients. The guideline also includes a discussion of suggested protocols and functional assays in host cells.

3.
Mem. Inst. Oswaldo Cruz ; 106(supl.1): 79-84, Aug. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-597247

RESUMEN

It is generally accepted that Plasmodium vivax, the most widely distributed human malaria parasite, causes mild disease and that this species does not sequester in the deep capillaries of internal organs. Recent evidence, however, has demonstrated that there is severe disease, sometimes resulting in death, exclusively associated with P. vivax and that P. vivax-infected reticulocytes are able to cytoadhere in vitro to different endothelial cells and placental cryosections. Here, we review the scarce and preliminary data on cytoadherence in P. vivax, reinforcing the importance of this phenomenon in this species and highlighting the avenues that it opens for our understanding of the pathology of this neglected human malaria parasite.


Asunto(s)
Humanos , Eritrocitos , Malaria Vivax , Plasmodium vivax , Adhesión Celular , Eritrocitos/fisiología , Malaria Vivax/patología , Plasmodium vivax/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA