Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(33): e2400862121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39106311

RESUMEN

Secreted signaling peptides are central regulators of growth, development, and stress responses, but specific steps in the evolution of these peptides and their receptors are not well understood. Also, the molecular mechanisms of peptide-receptor binding are only known for a few examples, primarily owing to the limited availability of protein structural determination capabilities to few laboratories worldwide. Plants have evolved a multitude of secreted signaling peptides and corresponding transmembrane receptors. Stress-responsive SERINE RICH ENDOGENOUS PEPTIDES (SCOOPs) were recently identified. Bioactive SCOOPs are proteolytically processed by subtilases and are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) in the model plant Arabidopsis thaliana. How SCOOPs and MIK2 have (co)evolved, and how SCOOPs bind to MIK2 are unknown. Using in silico analysis of 350 plant genomes and subsequent functional testing, we revealed the conservation of MIK2 as SCOOP receptor within the plant order Brassicales. We then leveraged AI-based structural modeling and comparative genomics to identify two conserved putative SCOOP-MIK2 binding pockets across Brassicales MIK2 homologues predicted to interact with the "SxS" motif of otherwise sequence-divergent SCOOPs. Mutagenesis of both predicted binding pockets compromised SCOOP binding to MIK2, SCOOP-induced complex formation between MIK2 and its coreceptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1, and SCOOP-induced reactive oxygen species production, thus, confirming our in silico predictions. Collectively, in addition to revealing the elusive SCOOP-MIK2 binding mechanism, our analytic pipeline combining phylogenomics, AI-based structural predictions, and experimental biochemical and physiological validation provides a blueprint for the elucidation of peptide ligand-receptor perception mechanisms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ligandos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Péptidos/metabolismo , Péptidos/química , Evolución Molecular , Modelos Moleculares , Transducción de Señal , Fosfotransferasas
2.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216519

RESUMEN

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Asunto(s)
Arabidopsis , Caspasas , Humanos , Caspasas/química , Simulación del Acoplamiento Molecular , Apoptosis , Proteínas de Unión al ADN
3.
Free Radic Biol Med ; 200: 117-129, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870374

RESUMEN

Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Paraquat , Proteómica , Empalme Alternativo , Mutación , ARN Mensajero/metabolismo , Estrés Oxidativo , Regulación de la Expresión Génica de las Plantas , Mamíferos/metabolismo
4.
Methods Mol Biol ; 2447: 127-137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35583778

RESUMEN

Metacaspases are cysteine proteases that are present in plants, protists, fungi, and bacteria. Previously, we found that physical damage, e.g., pinching with forceps or grinding on liquid nitrogen of plant tissues, activates Arabidopsis thaliana METACASPASE 4 (AtMCA4). AtMCA4 subsequently cleaves PROPEP1, the precursor pro-protein of the plant elicitor peptide 1 (Pep1). Here, we describe a protein extraction method to detect activation of AtMCA4 by Western blot with antibodies against endogenous AtMCA4 and a PROPEP1-YFP fusion protein. It is important to (1) keep plant tissues at all times on liquid nitrogen prior to protein extraction, and (2) denature the protein lysate as fast as possible, as metacaspase activation ensues quasi immediately because of tissue damage inherent to protein extraction. In theory, this method can serve to detect damage-induced alterations of any protein-of-interest in any organism for which antibodies or fusion proteins are available, and hence, will greatly aid the study of rapid damage-activated proteolysis in the future.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Western Blotting , Caspasas/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Proteolisis
5.
Science ; 363(6433)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30898901

RESUMEN

Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Calcio/metabolismo , Cisteína Endopeptidasas/metabolismo , Inmunomodulación , Inmunidad de la Planta , Precursores de Proteínas/metabolismo , Secuencia de Aminoácidos , Citosol/enzimología , Oligopéptidos/metabolismo
6.
Plant J ; 97(4): 765-778, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30394608

RESUMEN

Protein cysteine thiols are post-translationally modified under oxidative stress conditions. Illuminated chloroplasts are one of the important sources of hydrogen peroxide (H2 O2 ) and are highly sensitive to environmental stimuli, yet a comprehensive view of the oxidation-sensitive chloroplast proteome is still missing. By targeting the sulfenic acid YAP1C-trapping technology to the plastids of light-grown Arabidopsis cells, we identified 132 putatively sulfenylated plastid proteins upon H2 O2 pulse treatment. Almost half of the sulfenylated proteins are enzymes of the amino acid metabolism. Using metabolomics, we observed a reversible decrease in the levels of the amino acids Ala, Asn, Cys, Gln, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr and Val after H2 O2 treatment, which is in line with an anticipated decrease in the levels of the glycolysis and tricarboxylic acid metabolites. Through the identification of an organelle-tailored proteome, we demonstrated that the subcellular targeting of the YAP1C probe enables us to study in vivo cysteine sulfenylation at the organellar level. All in all, the identification of these oxidation events in plastids revealed that several enzymes of the amino acid metabolism rapidly undergo cysteine oxidation upon oxidative stress.


Asunto(s)
Aminoácidos/metabolismo , Cisteína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Proteínas de Plantas/genética , Ácidos Sulfénicos/metabolismo
7.
Scientifica (Cairo) ; 2016: 3482760, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27034898

RESUMEN

NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). NADPH is required by several peroxisomal enzymes involved in ß-oxidation, NO, and glutathione (GSH) generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH). Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH) with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS), while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA