Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Intervalo de año de publicación
1.
Rheumatology (Oxford) ; 61(3): 1265-1275, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34115840

RESUMEN

OBJECTIVE: SSc is an autoimmune connective tissue disorder characterized by inflammation and fibrosis. Although constitutive activation of fibroblasts is proposed to be responsible for the fibrotic and inflammatory features of the disease, the underlying mechanism remains elusive, and effective therapeutic targets are still lacking. The aim of this study was to evaluate the role of oxidative stress-induced senescence and its contribution to the pro-fibrotic and pro-inflammatory phenotypes of fibroblasts from SSc patients. METHODS: Dermal fibroblasts were isolated from SSc (n = 13) and healthy (n = 10) donors. Fibroblasts' intracellular and mitochondrial reactive oxygen species (ROS) were determined by flow cytometry. Mitochondrial function was measured by Seahorse XF24 analyser. Fibrotic and inflammatory gene expressions were assessed by qPCR and key pro-inflammatory components of the fibroblasts' secretome (IL-6 and IL-8) were quantified by ELISA. RESULTS: Compared with healthy fibroblasts, SSc fibroblasts displayed higher levels of both intracellular and mitochondrial ROS. Oxidative stress in SSc fibroblasts induced the expression of fibrotic genes and activated the TGF-ß-activated kinase 1 (TAK1)-IκB kinase ß (IKKß)-IFN regulatory factor 5 (IRF5) inflammatory signalling cascade. These cellular responses paralleled the presence of a DNA damage response, a senescence-associated secretory phenotype and a fibrotic response. Treatment of SSc fibroblasts with ROS scavengers reduced their pro-inflammatory secretome production and fibrotic gene expression. CONCLUSIONS: Oxidative stress-induced cellular senescence in SSc fibroblasts underlies their pro-inflammatory and pro-fibrotic phenotypes. Targeting redox imbalance of SSc fibroblasts enhances their in vitro functions and could be of relevance for SSc therapy.


Asunto(s)
Envejecimiento/metabolismo , Fibroblastos/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Esclerodermia Sistémica/metabolismo , Enfermedades de la Piel/metabolismo , Humanos , Fenotipo
2.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547241

RESUMEN

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Asunto(s)
Senescencia Celular/fisiología , NAD/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Línea Celular Tumoral , Senescencia Celular/genética , Citosol , Glucosa/metabolismo , Humanos , Hidrógeno/química , Hidrógeno/metabolismo , Malato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , NAD/fisiología , Oxidación-Reducción , Piruvato Carboxilasa/metabolismo , Ácido Pirúvico/metabolismo
3.
Sci Rep ; 11(1): 9854, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972583

RESUMEN

We present the design and synthesis of a small library of substituted biguanidium salts and their capacity to inhibit the growth of pancreatic cancer cells. We first present their in vitro and membrane activity, before we address their mechanism of action in living cells and in vivo activity. We show that phenylethynyl biguanidium salts possess higher ability to cross hydrophobic barriers, improve mitochondrial accumulation and anticancer activity. Mechanistically, the most active compound, 1b, like metformin, activated AMPK, decreased the NAD+/NADH ratio and mitochondrial respiration, but at 800-fold lower concentration. In vivo studies show that compound 1b significantly inhibits the growth of pancreatic cancer xenografts in mice, while biguanides currently in clinical trials had little activity.


Asunto(s)
Biguanidas/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Biguanidas/química , Biguanidas/uso terapéutico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral/trasplante , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos , Humanos , Concentración 50 Inhibidora , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología
4.
Cell Cycle ; 18(6-7): 759-770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30874462

RESUMEN

Senescence is a tumor suppressor program characterized by a stable growth arrest while maintaining cell viability. Senescence-associated ribogenesis defects (SARD) have been shown to regulate senescence through the ability of the ribosomal protein S14 (RPS14 or uS11) to bind and inhibit the cyclin-dependent kinase 4 (CDK4). Here we report another ribosomal protein that binds and inhibits CDK4 in senescent cells: L22 (RPL22 or eL22). Enforcing the expression of RPL22/eL22 is sufficient to induce an RB and p53-dependent cellular senescent phenotype in human fibroblasts. Mechanistically, RPL22/eL22 can interact with and inhibit CDK4-Cyclin D1 to decrease RB phosphorylation both in vitro and in cells. Briefly, we show that ribosome-free RPL22/eL22 causes a cell cycle arrest which could be relevant during situations of nucleolar stress such as cellular senescence or the response to cancer chemotherapy.


Asunto(s)
Ciclo Celular/fisiología , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Línea Celular , Senescencia Celular/fisiología , Células HEK293 , Humanos , Fosforilación/fisiología , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo
13.
Med. infant ; 19(2,n.esp): 168-172, jun. 2012. ilus
Artículo en Español | LILACS | ID: lil-774299

RESUMEN

El Sindrome de Lehman también llamado síndrome de meningoceles laterales. Se trata de una condición genética de herencia autosómica dominante que causa una alteración del tejido conectivo


Asunto(s)
Humanos , Femenino , Niño , Dolor de la Región Lumbar/congénito , Dolor de la Región Lumbar/diagnóstico , Meningocele/diagnóstico , Meningocele/genética , Argentina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA