Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 611: 118-128, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34933190

RESUMEN

when a droplet impacts on a superhydrophobic structured surface below a certain impact velocity, the droplet can bounce off completely from the surface. However, above such velocity a fraction of the droplet will pin on the surface. Surfaces capable of repelling water droplets are ubiquitous in nature or have been artificially fabricated. However, as the surface tension of the liquid is reduced, the capability of the surface to remain non-wetting gets hindered. Despite progress in previous research, the understanding and development of superamphiphobic surface to impacting low surface tension droplets remains elusive. It is proposed that multi-layer re-entrant like roughness can further enhance the anti-wetting properties also for low surface tension fluids. In this work, we produce patterned conical micro-structures with lateral nano-sized roughness. Furthermore, the droplet impact experiments are conducted on various surfaces with variable surface tensions (27 mN/m - 72 mN/m) by using droplets with different Weber numbers (2-170). We show that conical microstructures with lateral roughness mimicking tree-branches provides a surface topology capable of absorbing the force exerted by the droplet during the impact which prevents the droplet from pinning on the surface at higher impact velocity even for low surface tension droplets. Our study has significance for understanding the liquid interaction mechanism with the surface during the impact process and for the associated surface design considerations.


Asunto(s)
Árboles , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Tensión Superficial , Humectabilidad
2.
Langmuir ; 35(20): 6562-6570, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31038314

RESUMEN

Wicking, defined as absorption and passive spreading of liquid into a porous medium, has been identified as a key mechanism to enhance the heat transfer and prevent the thermal crisis. Reducing the evaporation time and increasing the Leidenfrost point (LFP) are important for an efficient and safe design of thermal management applications, such as electronics, nuclear, and aeronautics industry. Here, we report the effect of the wicking of superhydrophilic nanowires (NWs) on the droplet vaporization from low temperatures to temperatures above the Leidenfrost transition. By tuning the wicking capability of the surface, we show that the most wickable NW results in the fastest evaporation time (reduction of 82, 76, and 68% compared with a bare surface at, respectively, 51, 69, and 92 °C) and in one of the highest shifts of the LFP of a water droplet (5 µL) in the literature (about 260 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA