Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792071

RESUMEN

Every year, new compounds contained in consumer products, such as detergents, paints, products for personal hygiene, and drugs for human and veterinary use, are identified in wastewater and are added to the list of molecules that need monitoring. These compounds are indicated with the term emerging contaminants (or Contaminants of Emerging Concern, CECs) since they are potentially dangerous for the environment and human health. To date, among the most widely used methodologies for the removal of CECs from the aquatic environment, adsorption processes play a role of primary importance, as they have proven to be characterized by high removal efficiency, low operating and management costs, and an absence of undesirable by-products. In this paper, the adsorption of ibuprofen (IBU), a nonsteroidal anti-inflammatory drug widely used for treating inflammation or pain, was performed for the first time using two different types of geopolymer-based materials, i.e., a metakaolin-based (GMK) and an organic-inorganic hybrid (GMK-S) geopolymer. The proposed adsorbing matrices are characterized by a low environmental footprint and have been easily obtained as powders or as highly porous filters by direct foaming operated directly into the adsorption column. Preliminary results demonstrated that these materials can be effectively used for the removal of ibuprofen from contaminated water (showing a concentration decrease of IBU up to about 29% in batch, while an IBU removal percentage of about 90% has been reached in continuous), thus suggesting their potential practical application.


Asunto(s)
Ibuprofeno , Contaminantes Químicos del Agua , Purificación del Agua , Ibuprofeno/química , Ibuprofeno/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Adsorción , Purificación del Agua/métodos , Polímeros/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Aguas Residuales/química , Caolín/química
2.
Materials (Basel) ; 16(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36984279

RESUMEN

Stabilization/solidification (S/S) is becoming increasingly important, as it allows the remediation of contaminated sediments and their recovery into materials for civil engineering. This research proposes a cement-free cold granulation process for manufactured low-cost aggregates from marine sediments contaminated with organic compounds and metals. After the chemo-physical characterization of the study materials, two mix designs were prepared in a rotary plate granulator by adding two industrial by-products as geopolymer precursors, coal fly ash (CFA) and Blast Furnace Slag (BFS), but also alkaline activation solutions, water, and a fluidizer. The results indicated that sediments treated with mix 1 (i.e., with a higher percentage of water and fluidifier) represent the optimal solution in terms of metal leachability. The metal leachability was strictly influenced by aggregates' porosity, density, and microstructure. The technical performance (such as the aggregate impact value > 30%) suggested the use of granules as lightweight aggregates for pavement construction. The results indicated that cold granulation represents a sustainable solution to recycling contaminated marine sediments, CFA, and BFS into lightweight artificial aggregates.

3.
Materials (Basel) ; 15(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36500096

RESUMEN

This contribution presents the preparation and characterization of new geopolymer-based mortars obtained from recycling waste deriving from the production process and the "end-of-life" of porcelain stoneware products. Structural, morphological, and mechanical studies carried out on different kinds of mortars prepared by using several types of by-products (i.e., pressed burnt and extruded ceramic waste, raw pressed and gypsum resulting from exhausted moulds) point out that these systems can be easily cast, also in complex shapes, and show a more consistent microstructure with respect to the geopolymer paste, with a reduced amount of microcracks. Moreover, the excellent adhesion of these materials to common substrates such as pottery and earthenware, even for an elevated concentration of filler, suggests their use in the field of technical-artistic value-added applications, such as restoration, conservation, and/or rehabilitation of historic monuments, or simply as materials for building revetments. For all these reasons, the proposed materials could represent valuable candidates to try to overcome some problems experienced in the cultural heritage sector concerning the selection of environmentally friendly materials that simultaneously meet art and design technical requirements.

4.
Polymers (Basel) ; 14(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36559827

RESUMEN

The recent introduction of the Next Generation EU packages on the circular economy and the Italian Ecological Transition Plan has further boosted the research of effective routes to design materials with low energy and low environmental impact, in all areas of research, including art and design and cultural heritage. In this work, we describe for the first time the preparation and characterization of a new sustainable adhesive material to be used in the art and design sector, consisting of a geopolymer-based composite with polyvinyl acetate (PVAc), both considered more environmentally acceptable than the analogous inorganic or polymeric materials currently used in this sector. The key idea has been the development of organic-inorganic composites by reacting low molecular weight polymers with the geopolymer precursor to obtain a material with reduced brittleness and enhanced adhesion with common substrates. Structural, morphological, and mechanical studies pointed out the consistent microstructure of the composite materials if compared to the neat geopolymer, showing lower density (up to 15%), improved flexural strength (up to 30%), similar water absorption and a relevant toughening effect (up to 40%). Moreover, the easy pourability in complex shapes and the excellent adhesion of these materials to common substrates suggest their use as materials for restoration, rehabilitation of monuments, and decorative and architectural intervention. The organic-inorganic nature of these new materials also makes them easily recognizable from the support on which they are used, favoring, in line with the dictates of good restoration practices, their possible complete removal. For all these reasons, these new materials could represent promising candidates to overcome the limits related to the creative industry for what concerns the selection of environmentally friendly materials to meet design requirements with low environmental impacts.

5.
Materials (Basel) ; 15(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35454421

RESUMEN

The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of "green" concrete but that the sustainability of the building materials can only be achieved by implementing simultaneous multiple strategies aimed at reducing environmental impact and improving both durability and performances.

6.
Materials (Basel) ; 15(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208157

RESUMEN

The aluminum Bayer production process is the most diffused process in the world, but it creates a high amount of basic waste material known as red mud (RM). The use of RM as a precursor of alkali-activated materials is one of the best opportunities for both the ecosystem and the economy. In the present work, mortar samples were obtained by alkali activation of RM with various percentages of blast-furnace slag (BFS) and inert construction and demolition sands. This process creates samples that have a low environmental impact and that can be used as an alternative in the construction industry to cement materials or ceramic ones. The development of these new materials could also represent a way to reduce the CO2 emissions linked to cement and ceramic brick production. In the present study, cubic 40 mm samples reported very interesting values in compressive strength, with a maximum of about 70 MPa for low environmental impact mortars. With such a material, it is possible to create solid bricks for structural use and concrete tiles for road paving or use it for other purposes. Mortar specimens were prepared and characterized, and an LCA analysis with a "cradle-to-gate" approach was carried out for a comparison of the environmental impact of the studied mortars with other materials currently marketed.

7.
Materials (Basel) ; 14(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467622

RESUMEN

Power plants based on solar energy are spreading to accomplish the incoming green energy transition. Besides, affordable high-temperature sensible heat thermal energy storage (SHTES) is required. In this work, the temperature distribution and thermal performance of novel solid media for SHTES are investigated by finite element method (FEM) modelling. A geopolymer, with/without fibre reinforcement, is simulated during a transient charging/discharging cycle. A life cycle assessment (LCA) analysis is also carried out to investigate the environmental impact and sustainability of the proposed materials, analysing the embodied energy, the transport, and the production process. A Multi-Criteria Decision Making (MCDM) with the Analytical Hierarchy Process (AHP) approach, taking into account thermal/environmental performance, is used to select the most suitable material. The results show that the localized reinforcement with fibres increases thermal storage performance, depending on the type of fibre, creating curvatures in the temperature profile and accelerating the charge/discharge. High-strength, high-conductivity carbon fibres performed well, and the simulation approach can be applied to any fibre arrangement/material. On the contrary, the benefit of the fibres is not straightforward according to the three different scenarios developed for the LCA and MCDM analyses, due to the high impact of the fibre production processes. More investigations are needed to balance and optimize the coupling of the fibre material and the solid medium to obtain high thermal performance and low impacts.

8.
Materials (Basel) ; 13(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610547

RESUMEN

This research investigates the preparation and characterization of new organic-inorganic geopolymeric foams obtained by simultaneously reacting coal fly ash and an alkali silicate solution with polysiloxane oligomers. Foaming was realized in situ using Si0 as a blowing agent. Samples with density ranging from 0.3 to 0.7 g/cm3 that show good mechanical properties (with compressive strength up to ≈5 MPa for a density of 0.7 g/cm3) along with thermal performances (λ = 0.145 ± 0.001 W/m·K for the foamed sample with density 0.330 g/cm3) comparable to commercial lightweight materials used in the field of thermal insulation were prepared. Since these foams were obtained by valorizing waste byproducts, they could be considered as low environmental impact materials and, hence, with promising perspectives towards the circular economy.

9.
Materials (Basel) ; 13(3)2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31991550

RESUMEN

Entropy-Stabilized Oxides (ESO) is a modern class of multicomponent advanced ceramic materials with attractive functional properties. Through a five-component oxide formulation, the configurational entropy is used to drive the phase stabilization over a reversible solid-state transformation from a multiphase to a single-phase state. In this paper, a new transition metal/rare earth entropy-stabilized oxide, with composition Ce0.2Zr0.2Y0.2Gd0.2La0.2O2-, was found after several investigations on alternative candidate systems. X-Ray Diffraction (XRD) analyses of calcined powders pointed out different behavior as a function of the composition and a single-phase fluorite structure was obtained after a specific thermal treatment at 1500 °C. Powders presented the absence of agglomeration, so that the sintered specimen exhibited sufficient densification with a small porosity, uniformly distributed in the sample.

10.
Materials (Basel) ; 12(24)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817858

RESUMEN

For the first time, hybrid organic-inorganic geopolymeric foams were successfully used as monolithic adsorbents for the removal of metallic ions pollutants from wastewaters. The foams were realized by the in situ foaming of a hybrid geopolymer obtained by a reaction of metakaolin and polysiloxane oligomers under strong alkaline conditions and then cured at room temperature. In this way, porous materials with densities ranging from 0.4 to 0.7 g/cm3 and showing good mechanical properties were produced. With the aim of producing self-standing monolithic adsorbents for the removal of metallic ions pollutants from wastewaters, these porous hybrid geopolymers were subjected to a washing pretreatment with ultrapure water, dried, and then used for absorption tests by dipping them into an aqueous solution with an initial concentration of 20 ppm of Pb2+, Cd2+, Cu2+, and Zn2+ ions. Preliminary results indicated that all the tested materials are effective in the adsorption of the tested metal ions and do not release the removed metal ions upon sinking in ultrapure water, even for a very long time. Interestingly, compressive strength tests performed before and after the washing treatments show that the foamed samples remain intact and maintain their physical-mechanical characteristics, suggesting that these kinds of materials are promising candidates for the production of self-standing, monolithic adsorbent substrates that can be easily collected when exhausted, which is a major advantage in comparison with the use of powdered adsorbents. Moreover, since these materials can be obtained by a simple and versatile experimental procedure, they could be easily shaped or directly foamed into precast molds to be used in packed beds as membranes.

11.
Molecules ; 24(19)2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569664

RESUMEN

The preparation and characterization of innovative organic-inorganic hybrid geopolymers, obtained by valorizing coal fly ash generated from thermoelectric power plants, is reported for the first time. These hybrid materials are prepared by simultaneously reacting fly ash and dimethylsiloxane oligomers at 25 °C in a strongly alkaline environment. Despite their lower density, the obtained materials are characterized by highly improved mechanical properties when compared to the unmodified geopolymer obtained without the use of polysiloxanes, hence confirming the effectiveness of the applied synthetic strategy which specifically aims at obtaining hybrid materials with better mechanical properties in respect to conventional ones. This study is an example of the production of new materials by reusing and valorizing waste raw resources and by-products, thus representing a possible contribution towards the circular economy.


Asunto(s)
Ceniza del Carbón/química , Polímeros/química , Siloxanos/química , Fenómenos Mecánicos , Microscopía Electrónica de Rastreo , Estructura Molecular , Análisis Espectral
12.
Materials (Basel) ; 12(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252523

RESUMEN

The rare-earth carbonates represent a class of materials with great research interest owing to their intrinsic properties and because they can be used as template materials for the formation of other rare earth phases, particularly of rare-earth oxides. However, most of the literature is focused on the synthesis and characterization of hydroxycarbonates. Conversely, in the present study we have synthesized both rare-earth carbonates-with the chemical formula RE2(CO3)3·2-3H2O, in which RE represents a generic rare-earth element, and a tengerite-type structure with a peculiar morphology-and rare-earth hydroxycarbonates with the chemical formula RECO3OH, by hydrothermal treatment at low temperature (120 °C), using metal nitrates and ammonium carbonates as raw materials, and without using any additive or template. We found that the nature of the rare-earth used plays a crucial role in relation to the formed phases, as predicted by the contraction law of lanthanides. In particular, the hydrothermal synthesis of rare-earth carbonates with a tengerite-type structure was obtained for the lanthanides from neodymium to erbium. A possible explanation of the different behaviors of lighter and heavier rare-earths is given.

13.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29996741

RESUMEN

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Asunto(s)
Materiales de Construcción , Tecnología Química Verde , Administración de Residuos/métodos , Álcalis/química , Compuestos de Aluminio/química , Silicatos de Aluminio/química , Compuestos de Calcio/química , Arcilla , Corrosión , Compuestos de Azufre/química
14.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29991308

RESUMEN

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Asunto(s)
Materiales de Construcción , Administración de Residuos/métodos , Compuestos de Calcio/química , Arcilla/química , Tecnología Química Verde/métodos , Óxidos/química , Reciclaje , Goma/química , Dióxido de Silicio/química
15.
Materials (Basel) ; 11(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271912

RESUMEN

This paper reports results related to early age temperature and shrinkage measurements by means fiber Bragg gratings (FBGs), which were embedded in geopolymer matrices. The sensors were properly packaged in order to discriminate between different shrinkage behavior and temperature development. Geopolymer systems based on metakaolin were investigated, which dealt with different commercial aluminosilicate precursors and siliceous filler contents. The proposed measuring system will allow us to control, in a very accurate way, the early age phases of the binding systems made by metakaolin geopolymer. A series of experiments were conducted on different compositions; moreover, rheological issues related to the proposed experimental method were also assessed.

16.
J Appl Biomater Funct Mater ; 14(2): e189-96, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27149940

RESUMEN

BACKGROUND: Gadolinium-doped ceria is an attractive electrolyte material for potential application in solid oxide fuel cells (SOFCs) operating at intermediate temperatures typically with 10%-20% substitution of Ce+4 by Gd+3. In particular, 10% gadolinium-doped ceria seems to have the highest values of conductivities among the other dopant compositions. METHODS: Nanosized powders of gadolinium-doped ceria were prepared by hydrothermal treatment using coprecipitate as a precursor and in the presence of 3 different mineralizer solutions. The powders obtained were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and thermal analysis, while the electrical behavior of the corresponding pellets were ascertained by AC impedance spectroscopy. RESULTS: Nanocrystalline gadolinium-doped ceria powders with fluorite cubic crystal structure were obtained by hydrothermal treatment. Independent of the mineralizer used, these powders were able to produce very dense ceramics, especially when selecting an optimized sintering cycle. In contrast, the electrical behavior of the samples was influenced by the mineralizer solution, and the samples synthesized in the neutral and alkaline solutions showed higher values of electrical conductivity, in the range of temperatures of interest. CONCLUSIONS: By the coprecipitation method, it has been possible to synthesize nanosized gadolinium-doped cerium oxide in a fluorite structure, stable in a wide range of temperatures. Hydrothermal treatment directly on the as-synthesized coprecipitates, without any drying step, had a very positive effect on the powders, which can be sintered with a high degree of densification, especially with an optimized sintering cycle. Furthermore, the electrical behavior of these samples was very interesting, especially for the samples synthesized using neutral mineralizer solution and basic mineralizer solution.


Asunto(s)
Cerio/química , Gadolinio/química , Respiraderos Hidrotermales/química , Nanopartículas/química , Nanopartículas/ultraestructura
17.
J Appl Biomater Funct Mater ; 14(1): e35-41, 2016 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-26952587

RESUMEN

BACKGROUND: Gadolinium-doped ceria (GDC) is a promising alternative as a solid electrolyte for intermediate temperature solid oxide fuel cells (ITSOFCs) due to its low operating temperature and its high electrical conductivity. The traditional synthesis processes require extended time for powder preparation. Sol-gel methodology for electrolyte fabrication is more versatile and efficient. METHODS: In this work, nanocrystalline ceria powders, with 10 and 20 mol% of gadolinium (Ce0.9Gd0.1O1.95 and Ce0.8Gd0.2O1.9) were synthesized by a modified sol-gel technique, featuring a nitrate-fuel exothermic reaction. GDC tablets were prepared from powders and sintered at 1500°C with a dwell time of 3 hours. The sintered pellets' microstructure (by SEM) and electrical conductivity (by EIS) were evaluated. The powder properties, such as crystalline structure (by XRD), thermal properties (TGA/DTA), particle size and morphology (TEM) and textural properties (BET method) were determined and, in addition, for the first time an accurate chemical structural evolution (FTIR) was studied. RESULTS: Sintered GDC0.8 samples exhibited the maximum theoretical density of 97% and an average grain size of 700 nm. The electrical conductivity vs. temperature showed values ranging from 1.9∙10(-2) to 5.5∙10(-2) S·cm(-1) at 600°C and 800°C for GDC with 20 mol% of gadolinium. CONCLUSIONS: The methodology investigated showed reduced reaction time, a better control of stoichiometry and low cost. Characterization results demonstrated that these materials can be applied in ITSOFCs due to high conductivity, even at 550°C-600°C. The increased conductivity is related to the improved mobility of gadolinium ions in a high-density structure, with nanometric grains.


Asunto(s)
Cerámica/química , Cerio/química , Electrólitos/química , Gadolinio/química , Nanopartículas/química
18.
Materials (Basel) ; 9(6)2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28773582

RESUMEN

The preparation and characterization of composite materials based on geopolymers obtained from fly ash and epoxy resins are reported for the first time. These materials have been prepared through a synthetic method based on the concurrent reticulation of the organic and inorganic components that allows the formation of hydrogen bonding between the phases, ensuring a very high compatibility between them. These new composites show significantly improved mechanical properties if compared to neat geopolymers with the same composition and comparable performances in respect to analogous geopolymer-based composites obtained starting from more expensive raw material such as metakaolin. The positive combination of an easy synthetic approach with the use of industrial by-products has allowed producing novel low cost aluminosilicate binders that, thanks to their thixotropicity and good adhesion against materials commonly used in building constructions, could be used within the field of sustainable building.

19.
Materials (Basel) ; 9(7)2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-28773634

RESUMEN

This study presents an experimental overview for the development of photocatalytic materials based on geopolymer binders as catalyst support matrices. Particularly, geopolymer matrices obtained from different solid precursors (fly ash and metakaolin), composite systems (siloxane-hybrid, foamed hybrid), and curing temperatures (room temperature and 60 °C) were investigated for the same photocatalyst content (i.e., 3% TiO2 by weight of paste). The geopolymer matrices were previously designed for different applications, ranging from insulating (foam) to structural materials. The photocatalytic activity was evaluated as NO degradation in air, and the results were compared with an ordinary Portland cement reference. The studied matrices demonstrated highly variable photocatalytic performance depending on both matrix constituents and the curing temperature, with promising activity revealed by the geopolymers based on fly ash and metakaolin. Furthermore, microstructural features and titania dispersion in the matrices were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analyses. Particularly, EDS analyses of sample sections indicated segregation effects of titania in the surface layer, with consequent enhancement or depletion of the catalyst concentration in the active sample region, suggesting non-negligible transport phenomena during the curing process. The described results demonstrated that geopolymer binders can be interesting catalyst support matrices for the development of photocatalytic materials and indicated a large potential for the exploitation of their peculiar features.

20.
Materials (Basel) ; 7(8): 5603-5616, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-28788149

RESUMEN

Reservoir silting is an unavoidable issue. It is estimated that in Italy, the potential rate of silting-up in large reservoirs ranges from 0.1% to 1% in the presence of wooded river basins and intensive agricultural land use, respectively. In medium and small-sized reservoirs, these values vary between 0.3% and 2%. Considering both the types of reservoirs, the annual average loss of storage capacity would be of about 1.59%. In this paper, a management strategy aimed at sediment productive reuse is presented. Particularly, the main engineering outcomes of an extensive experimental program on geopolymer binder synthesis is reported. The case study deals with Occhito reservoir, located in Southern Italy. Clay sediments coming from this silted-up artificial lake were characterized, calcined and activated, by means of a wide set of alkaline activating solutions. The results showed the feasibility of this recovery process, optimizing a few chemical parameters. The possible reuse in building material production (binders, precast concrete, bricks, etc.) represents a relevant sustainable alternative to landfill and other more consolidated practices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...