Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916363

RESUMEN

This article is focused on studying the effect of the reprocessing cycles on the mechanical, thermal, and aesthetic properties of a biocomposite. This process is based on starch thermoplastic polymer (TPS) filled with 20 wt% almond shell powder (ASP) and epoxidized linseed oil (ELO) as a compatibilizing additive. To do so, the biocomposite was prepared in a twin-screw extruder, molded by injection, and characterized in terms of its mechanical, thermal, and visual properties (according to CieLab) and the melt flow index (MFI). The analyses carried out were tensile, flexural, Charpy impact tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of the reprocessing were also studied for the biodegradable unfilled TPS polymer. The results showed that TPS and TPS/ASP biocomposite suffer changes progressively on the properties studied after each reprocessing cycle. Furthermore, it was observed that the addition of ASP intensified these effects regarding TPS. However, in spite of the progressive degradation in both cases, it is technically feasible to reprocess the material at least three times without needing to incorporate virgin material.

2.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546216

RESUMEN

This contribution focuses on the development of flax and flax/basalt hybrid reinforced composites based on epoxidized linseed oil (ELO) resin, exploiting the feasibility of different ratios of glutaric anhydride (GA) to maleinized linseed oil (MLO) in the hardener system (50:0, 40:10 and 30:20 wt.%) to provide crosslinked thermosets with balanced properties. The hybrid laminates have been manufactured by resin transfer molding (RTM) and subjected to dynamic-mechanical (DMA) and thermal gravimetry (TGA) analysis. The presence of glutaric anhydride (GA) resulted in hard and relatively brittle flax and flax/basalt laminates, whose loss moduli decreased as the number of basalt plies diminished. Furthermore, the increase in MLO content in the GA:MLO hardener system shifted the glass transition temperatures (Tg) from 70 °C to 59 and 56 °C, which is representative of a decrease in brittleness of the crosslinked resin. All samples exhibited two stages of their decomposition process irrespective of the MLO content. The latter influenced the residual mass content that increased with the increase of the MLO wt.% from 10 to 30 wt.%, with shifts of the final degradation temperatures from 410 °C to 425 °C and 445 °C, respectively.

3.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911803

RESUMEN

This article is focused on the development of a series of biodegradable and eco-friendly biocomposites based on starch polymer (Mater-Bi DI01A) filled with 30 wt% almond shell (AS) of different varieties (Desmayo Rojo, Largueta, Marcona, Mollar, and a commercial mixture of varieties) to study the influence of almond variety in the properties of injected biodegradable parts. The different AS varieties are analysed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). The biocomposites are prepared in a twin-screw extruder and characterized in terms of their mechanical (tensile, flexural, Charpy impact, and hardness tests) and thermal properties (differential scanning calorimetry (DSC) and TGA). Despite observing differences in the chemical composition of the individual varieties with respect to the commercial mixture, the results obtained from the mechanical characterisation of the biocomposites do not present significant differences between the diverse varieties used. From these results, it was concluded that the most recommended option is to work with the commercial mixture of almond shell varieties, as it is easier and cheaper to acquire.

4.
Polymers (Basel) ; 12(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936575

RESUMEN

In the present study, partially bio-based polyethylene terephthalate (bio-PET) was melt-mixed at 15-45 wt% with recycled polyethylene terephthalate (r-PET) obtained from remnants of the injection blowing process of contaminant-free food-use bottles. The resultant compounded materials were thereafter shaped into pieces by injection molding for characterization. Poly(styrene-co-glycidyl methacrylate) (PS-co-GMA) was added at 1-5 parts per hundred resin (phr) of polyester blend during the extrusion process to counteract the ductility and toughness reduction that occurred in the bio-PET pieces after the incorporation of r-PET. This random copolymer effectively acted as a chain extender in the polyester blend, resulting in injection-molded pieces with slightly higher mechanical resistance properties and nearly the same ductility and toughness than those of neat bio-PET. In particular, for the polyester blend containing 45 wt% of r-PET, elongation at break (εb) increased from 10.8% to 378.8% after the addition of 5 phr of PS-co-GMA, while impact strength also improved from 1.84 kJ·m-2 to 2.52 kJ·m-2. The mechanical enhancement attained was related to the formation of branched and larger macromolecules by a mechanism of chain extension based on the reaction of the multiple glycidyl methacrylate (GMA) groups present in PS-co-GMA with the hydroxyl (-OH) and carboxyl (-COOH) terminal groups of both bio-PET and r-PET. Furthermore, all the polyester blend pieces showed thermal and dimensional stabilities similar to those of neat bio-PET, remaining stable up to more than 400 °C. Therefore, the use low contents of the tested multi-functional copolymer can successfully restore the properties of bio-based but non-biodegradable polyesters during melt reprocessing with their recycled petrochemical counterparts and an effective mechanical recycling is achieved.

5.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893806

RESUMEN

This study presents the valorization of cotton waste from the textile industry for the development of sustainable and cost-competitive biopolymer composites. The as-received linter of recycled cotton was first chopped to obtain short fibers, called recycled cotton fibers (RCFs), which were thereafter melt-compounded in a twin-screw extruder with partially bio-based polyethylene terephthalate (bio-PET) and shaped into pieces by injection molding. It was observed that the incorporation of RCF, in the 1⁻10 wt% range, successfully increased rigidity and hardness of bio-PET. However, particularly at the highest fiber contents, the ductility and toughness of the pieces were considerably impaired due to the poor interfacial adhesion of the fibers to the biopolyester matrix. Interestingly, RCF acted as an effective nucleating agent for the bio-PET crystallization and it also increased thermal resistance. In addition, the overall dimensional stability of the pieces was improved as a function of the fiber loading. Therefore, bio-PET pieces containing 3⁻5 wt% RCF presented very balanced properties in terms of mechanical strength, toughness, and thermal resistance. The resultant biopolymer composite pieces can be of interest in rigid food packaging and related applications, contributing positively to the optimization of the integrated biorefinery system design and also to the valorization of textile wastes.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/economía , Costos y Análisis de Costo , Fibra de Algodón/economía , Tereftalatos Polietilenos/química , Rastreo Diferencial de Calorimetría , Módulo de Elasticidad , Fenómenos Mecánicos , Reciclaje , Temperatura , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...