Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39238094

RESUMEN

BACKGROUND: Polytrauma results in systemic inflammation and increased circulating fibrinogen, which increases the risk of microvascular and macrovascular thrombosis that contributes to secondary organ damage and venous thromboembolism (VTE). There are no clinically approved agents to prevent hyperfibrinogenemia after polytrauma. We hypothesized that preventing the increase in fibrinogen levels after polytrauma would suppress thrombosis. METHODS: Small-interfering ribonucleic acid (siRNA) against fibrinogen was encapsulated in lipid nanoparticles (siFibrinogen). Mice underwent a model of polytrauma and were then given varying doses of siFibrinogen, control siRNA, or no treatment. Fibrinogen was measured for 1 week via enxyme-linked immunosorbent assay (ELISA). To model postinjury VTE, the inferior vena cava was ligated 2 days after polytrauma in a portion of the mice. Thrombus weight was measured 48 hours after the inferior vena cava was ligated. RESULTS: Treatment with siFibrinogen prevented hyperfibrinogenemia after trauma without exacerbating the hypofibrinogenemic state that occurs in the acute injury period (1 hour). In treated groups, fibrinogen was significantly lower from 6 hours postinjury through the 7-day monitoring period. Maximal fibrinogen reduction was observed at 72 hours. Here, mice that received 2.0 mg/kg of siFibrinogen had 1% of normal values relative to untreated mice, and mice that received 1.0 or 0.5 mg/kg had 4%. Mice treated with siFibrinogen that underwent the postinjury VTE model had significantly reduced thrombus weight compared with control siRNA-treated animals. More notably, among all siFibrinogen treated mice, 12 of 18 were completely protected from thrombosis, compared with 0 of 9 displaying protection in the control group. CONCLUSION: The rise of fibrinogen and the size of thrombi after polytrauma can be mitigated via the administration of siRNA against fibrinogen. siFibrinogen represents a promising novel target for VTE prophylaxis posttrauma.

2.
Mol Ther Methods Clin Dev ; 32(3): 101314, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39253356

RESUMEN

In vivo delivery of mRNA is promising for the study of gene expression and the treatment of diseases. Lipid nanoparticles (LNPs) enable efficient delivery of mRNA constructs, but protein expression has been assumed to be limited to the liver. With specialized LNPs, delivery to extrahepatic tissue occurs in small animal models; however, it is unclear if global delivery of mRNA to all major organs is possible in humans because delivery may be affected by differences in innate immune response and relative organ size. Furthermore, limited studies with LNPs have been performed in large animal models, such as swine, due to their sensitivity to complement activation-related pseudoallergy (CARPA). In this study, we found that exogenous protein expression occurred in all major organs when swine were injected intravenously with a relatively low dose of mRNA encapsulated in a clinically relevant LNP formulation. Exogenous protein was detected in the liver, spleen, lung, heart, uterus, colon, stomach, kidney, small intestine, and brain of the swine without inducing CARPA. Furthermore, protein expression was detected in the bone marrow, including megakaryocytes, hematopoietic stem cells, and granulocytes, and in circulating white blood cells and platelets. These results show that nearly all major organs contain exogenous protein expression and are viable targets for mRNA therapies.

3.
Mol Ther Methods Clin Dev ; 32(2): 101258, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38779336

RESUMEN

Genetic manipulation of animal models is a fundamental research tool in biology and medicine but is challenging in large animals. In rodents, models can be readily developed by knocking out genes in embryonic stem cells or by knocking down genes through in vivo delivery of nucleic acids. Swine are a preferred animal model for studying the cardiovascular and immune systems, but there are limited strategies for genetic manipulation. Lipid nanoparticles (LNPs) efficiently deliver small interfering RNA (siRNA) to knock down circulating proteins, but swine are sensitive to LNP-induced complement activation-related pseudoallergy (CARPA). We hypothesized that appropriately administering optimized siRNA-LNPs could knock down circulating levels of plasminogen, a blood protein synthesized in the liver. siRNA-LNPs against plasminogen (siPLG) reduced plasma plasminogen protein and hepatic plasminogen mRNA levels to below 5% of baseline values. Functional assays showed that reducing plasminogen levels modulated systemic blood coagulation. Clinical signs of CARPA were not observed, and occasional mild and transient hepatotoxicity was present in siPLG-treated animals at 5 h post-infusion, which returned to baseline by 7 days. These findings advance siRNA-LNPs in swine models, enabling genetic engineering of blood and hepatic proteins, which can likely expand to proteins in other tissues in the future.

4.
J Thromb Haemost ; 22(8): 2103-2114, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38663489

RESUMEN

Regulation of fibrinolysis, the process that degrades blood clots, is pivotal in maintaining hemostasis. Dysregulation leads to thrombosis or excessive bleeding. Proteins in the fibrinolysis system include fibrinogen, coagulation factor XIII, plasminogen, tissue plasminogen activator, urokinase plasminogen activator, α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, plasminogen activator inhibitor-1, α2-macroglobulin, and others. While each of these is a potential therapeutic target for diseases, they lack effective or long-acting inhibitors. Rapid advances in RNA-based technologies are creating powerful tools to control the expression of proteins. RNA agents can be long-acting and tailored to either decrease or increase production of a specific protein. Advances in nucleic acid delivery, such as by lipid nanoparticles, have enabled the delivery of RNA to the liver, where most proteins of coagulation and fibrinolysis are produced. This review will summarize the classes of RNA that induce 1) inhibition of protein synthesis, including small interfering RNA and antisense oligonucleotides; 2) protein expression, including messenger RNA and self-amplifying RNA; and 3) gene editing for gene knockdown and precise editing. It will review specific examples of RNA therapies targeting proteins in the coagulation and fibrinolysis systems and comment on the wide range of opportunities for controlling fibrinolysis for biological applications and future therapeutics using state-of-the-art RNA therapies.


Asunto(s)
Fibrinólisis , Humanos , Fibrinólisis/efectos de los fármacos , Animales , Coagulación Sanguínea/efectos de los fármacos , Terapia Genética , Edición Génica , Oligonucleótidos Antisentido/uso terapéutico , Trombosis/sangre , ARN Interferente Pequeño/uso terapéutico , ARN Interferente Pequeño/metabolismo , ARN/genética
5.
Mol Pharm ; 19(7): 2175-2182, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35642083

RESUMEN

Ionizable cationic lipids are essential for efficient in vivo delivery of RNA by lipid nanoparticles (LNPs). DLin-MC3-DMA (MC3), ALC-0315, and SM-102 are the only ionizable cationic lipids currently clinically approved for RNA therapies. ALC-0315 and SM-102 are structurally similar lipids used in SARS-CoV-2 mRNA vaccines, while MC3 is used in siRNA therapy to knock down transthyretin in hepatocytes. Hepatocytes and hepatic stellate cells (HSCs) are particularly attractive targets for RNA therapy because they synthesize many plasma proteins, including those that influence blood coagulation. While LNPs preferentially accumulate in the liver, evaluating the ability of different ionizable cationic lipids to deliver RNA cargo into distinct cell populations is important for designing RNA-LNP therapies with minimal hepatotoxicity. Here, we directly compared LNPs containing either ALC-0315 or MC3 to knock-down coagulation factor VII (FVII) in hepatocytes and ADAMTS13 in HSCs. At a dose of 1 mg/kg siRNA in mice, LNPs with ALC-0315 achieved a 2- and 10-fold greater knockdown of FVII and ADAMTS13, respectively, compared to LNPs with MC3. At a high dose (5 mg/kg), ALC-0315 LNPs increased markers of liver toxicity (ALT and bile acids), while the same dose of MC3 LNPs did not. These results demonstrate that ALC-0315 LNPs achieves potent siRNA-mediated knockdown of target proteins in hepatocytes and HSCs, in mice, though markers of liver toxicity can be observed after a high dose. This study provides an initial comparison that may inform the development of ionizable cationic LNP therapeutics with maximal efficacy and limited toxicity.


Asunto(s)
COVID-19 , Nanopartículas , Amino Alcoholes , Animales , Caprilatos , Cationes/metabolismo , Decanoatos , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Lípidos , Liposomas , Ratones , ARN Interferente Pequeño , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA