Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
Med Phys ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851210

RESUMEN

BACKGROUND: In preparation of future clinical trials employing the Mobetron electron linear accelerator to deliver FLASH Intraoperative Radiation Therapy (IORT), the development of a Monte Carlo (MC)-based framework for dose calculation was required. PURPOSE: To extend and validate the in-house developed fast MC dose engine MonteRay (MR) for future clinical applications in IORT. METHODS: MR is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium, and carbon ion beams. In this work, development steps are taken to include electrons and photons in MR are presented. To assess MRs accuracy, MR generated simulation results were compared against FLUKA predictions in water, in presence of heterogeneities as well as in an anthropomorphic phantom. Additionally, dosimetric data has been acquired to evaluate MRs accuracy in predicting dose-distributions generated by the Mobetron accelerator. Runtimes of MR were evaluated against those of the general-purpose MC code FLUKA on standard benchmark problems. RESULTS: MR generated dose distributions for electron beams incident on a water phantom match corresponding FLUKA calculated distributions within 2.3% with range values matching within 0.01 mm. In terms of dosimetric validation, differences between MR calculated and measured dose values were below 3% for almost all investigated positions within the water phantom. Gamma passing rate (1%/1 mm) for the scenarios with inhomogeneities and gamma passing rate (3%/2 mm) with the anthropomorphic phantom, were > 99.8% and 99.4%, respectively. The average dose differences between MR (FLUKA) and the measurements was 1.26% (1.09%). Deviations between MR and FLUKA were well within 1.5% for all investigated depths and 0.6% on average. In terms of runtime, MR achieved a speedup against reference FLUKA simulations of about 13 for 10 MeV electrons. CONCLUSIONS: Validations against general purpose MC code FLUKA predictions and experimental dosimetric data have proven the validity of the physical models implemented in MR for IORT applications. Extending the work presented here, MR will be interfaced with external biophysical models to allow accurate FLASH biological dose predictions in IORT.

2.
Med Phys ; 51(2): 1433-1449, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748042

RESUMEN

BACKGROUND: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; so far however, no commercial treatment planning system (TPS) provides a fast MC for supporting clinical practice in carbon ion therapy. PURPOSE: To extend and validate the in-house developed fast MC dose engine MonteRay for carbon ion therapy, including physical and biological dose calculation. METHODS: MonteRay is a CPU MC dose calculation engine written in C++ that is capable of simulating therapeutic proton, helium and carbon ion beams. In this work, development steps taken to include carbon ions in MonteRay are presented. Dose distributions computed with MonteRay are evaluated using a comprehensive validation dataset, including various measurements (pristine Bragg peaks, spread out Bragg peaks in water and behind an anthropomorphic phantom) and simulations of a patient plan. The latter includes both physical and biological dose comparisons. Runtimes of MonteRay were evaluated against those of FLUKA MC on a standard benchmark problem. RESULTS: Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. In terms of pristine Bragg peaks, mean errors between simulated and measured integral depth dose distributions were between -2.3% and +2.7%. Comparing SOBPs at 5, 12.5 and 20 cm depth, mean absolute relative dose differences were 0.9%, 0.7% and 1.6% respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of 1.2 % ± 1.1 % $1.2\% \pm 1.1\;\%$ with global 3%/3 mm 3D-γ passing rates of 99.3%, comparable to those previously reached with FLUKA (98.9%). Comparisons against dose predictions computed with the clinical treatment planning tool RayStation 11B for a meningioma patient plan revealed excellent local 1%/1 mm 3D-γ passing rates of 98% for physical and 94% for biological dose. In terms of runtime, MonteRay achieved speedups against reference FLUKA simulations ranging from 14× to 72×, depending on the beam's energy and the step size chosen. CONCLUSIONS: Validations against clinical dosimetric measurements in homogeneous and heterogeneous scenarios and clinical TPS calculations have proven the validity of the physical models implemented in MonteRay. To conclude, MonteRay is viable as a fast secondary MC engine for supporting clinical practice in proton, helium and carbon ion radiotherapy.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Humanos , Protones , Dosificación Radioterapéutica , Helio/uso terapéutico , Planificación de la Radioterapia Asistida por Computador , Método de Montecarlo , Carbono/uso terapéutico
3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768652

RESUMEN

Long-term human space missions such as a future journey to Mars could be characterized by several hazards, among which radiation is one the highest-priority problems for astronaut health. In this work, exploiting a pre-existing interface between the BIANCA biophysical model and the FLUKA Monte Carlo transport code, a study was performed to calculate astronaut absorbed doses and equivalent doses following GCR exposure under different shielding conditions. More specifically, the interface with BIANCA allowed us to calculate both the RBE for cell survival, which is related to non-cancer effects, and that for chromosome aberrations, related to the induction of stochastic effects, including cancer. The results were then compared with cancer and non-cancer astronaut dose limits. Concerning the stochastic effects, the equivalent doses calculated by multiplying the absorbed dose by the RBE for chromosome aberrations ("high-dose method") were similar to those calculated using the Q-values recommended by ICRP. For a 650-day mission at solar minimum (representative of a possible Mars mission scenario), the obtained values are always lower than the career limit recommended by ICRP (1 Sv), but higher than the limit of 600 mSv recently adopted by NASA. The comparison with the JAXA limits is more complex, since they are age and sex dependent. Concerning the deterministic limits, even for a 650-day mission at solar minimum, the values obtained by multiplying the absorbed dose by the RBE for cell survival are largely below the limits established by the various space agencies. Following this work, BIANCA, interfaced with an MC transport code such as FLUKA, can now predict RBE values for cell death and chromosome aberrations following GCR exposure. More generally, both at solar minimum and at solar maximum, shielding of 10 g/cm2 Al seems to be a better choice than 20 g/cm2 for astronaut protection against GCR.


Asunto(s)
Radiación Cósmica , Protección Radiológica , Vuelo Espacial , Humanos , Astronautas , Dosis de Radiación , Protección Radiológica/métodos
4.
Med Phys ; 50(4): 2510-2524, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36542403

RESUMEN

BACKGROUND: Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy. PURPOSE: To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy. METHODS: MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, for example, for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations. RESULTS: Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. Comparing SOBPs at 5, 12.5, and 20 cm depth, mean absolute percent dose differences were 0.7%, 0.7%, and 1.4%, respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of about 1.2% (FLUKA: 1.5%) with per voxel errors ranging from -4.5% to 4.1% (FLUKA: -6% to 3%). Computed global 3%/3 mm 3D-gamma passing rates of ∼99% were achieved, exceeding those previously reported for an analytical dose engine. Comparisons against FLUKA simulations for a patient plan revealed local 2%/2 mm 3D-gamma passing rates of 98%. Compared to FLUKA in voxelized geometries, MonteRay saw run-time reductions ranging from 20× to 60×, depending on the beam's energy. CONCLUSIONS: MonteRay, the first fast MC engine dedicated to helium ion therapy, has been successfully developed with a focus on both speed and accuracy. Validations against dosimetric measurements in homogeneous and heterogeneous scenarios and FLUKA MC calculations have proven the validity of the physical models implemented. Timing comparisons have shown significant speedups between 20 and 60 when compared to FLUKA, making MonteRay viable for clinical routine. MonteRay will support research and clinical practice at HIT, for example, TPS development, validation and treatment design for upcoming clinical trials for raster-scanned helium ion therapy.


Asunto(s)
Terapia de Protones , Protones , Humanos , Helio/uso terapéutico , Benchmarking , Planificación de la Radioterapia Asistida por Computador , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
5.
Phys Med Biol ; 67(11)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35576922

RESUMEN

Objective.The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path. Therefore, it requires a precise modelling, especially for the pencil-beam scanning technique. Currently, two radiobiological models, LEM I and MKM, are in use for heavy ions in scanned pencil-beam facilities.Approach.Utilizing an interface with the FLUKA Particle Therapy Tool, BIANCA was applied to re-calculate the RBE-weighted dose distribution for carbon-ion treatment of three patients (chordoma, head-and-neck and prostate) previously irradiated at CNAO, where radiobiological optimization was based on LEM I. The predictions obtained by BIANCA were based either on chordoma cell survival (RBEsurv), or on dicentric aberrations in peripheral blood lymphocytes (RBEab), which are indicators of late normal tissue damage, including secondary tumours. The simulation outcomes were then compared with those provided by LEM I.Main results.While in the target and in the entrance channel BIANCA predictions were lower than those obtained by LEM I, the two models provided very similar results in the considered OAR. The observed differences betweenRBEsurvandRBEab(which were also dependent on fractional dose and LET) suggest that in normal tissues the information on cell survival should be integrated by information more closely related to the induction of late damage, such as chromosome aberrations.Significance.This work showed that BIANCA is suitable for treatment plan optimization in ion-beam therapy, especially considering that it can predict both cell survival and chromosome aberrations and has previously shown good agreement with carbon-ion experimental data.


Asunto(s)
Cordoma , Radioterapia de Iones Pesados , Carbono/uso terapéutico , Aberraciones Cromosómicas , Radioterapia de Iones Pesados/métodos , Humanos , Iones , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Efectividad Biológica Relativa
6.
J Radiol Prot ; 42(2)2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35453133

RESUMEN

Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions. While previously BIANCA has been validated for calculating cell death along hadrontherapy beams up to oxygen, herein the approach was extended up to Fe ions. Specifically, experimental survival curves available in literature for V79 cells irradiated by Si-, Ne-, Ar- and Fe-ions were reproduced, and a reference radiobiological database describing V79 cell survival as a function of ion type (1 ⩽Z⩽ 26), energy and dose was constructed. Analogous databases were generated for Chinese hamster ovary hamster cells and human skin fibroblasts, finding good agreement between simulations and data. Concerning chromosome aberrations, which are regarded as radiation risk biomarkers, dicentric data in human lymphocytes irradiated by heavy ions up to iron were reproduced, and a radiobiological database allowing calculation of lymphocyte dicentric yields as a function of dose, ion type (1 ⩽Z⩽ 26) and energy was constructed. Following interface between BIANCA and the FLUKA Monte Carlo transport code, a feasibility study was performed to calculate the relative biological effectiveness (RBE) of different GCR spectrum components, for both dicentrics and cell death. Fe-ions, although representing only 10% of the total absorbed dose, were found to be responsible for about 35%-40% of the RBE-weighted dose. Interestingly, the RBE for dicentrics was higher than that for cell survival. More generally, this work shows that BIANCA can calculate RBE values for cell death and lymphocyte dicentrics not only for ion therapy, but also for space radiation.


Asunto(s)
Radiación Cósmica , Iones Pesados , Animales , Células CHO , Muerte Celular , Aberraciones Cromosómicas , Radiación Cósmica/efectos adversos , Cricetinae , Cricetulus , Humanos , Hierro
7.
Phys Med Biol ; 67(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395649

RESUMEN

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Iones , Protones , Efectividad Biológica Relativa
8.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639218

RESUMEN

Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells. This database was then read by the FLUKA Monte Carlo transport code, thus allowing us to calculate the Relative Biological Effectiveness (RBE) for dicentric induction along therapeutic C-ion beams. A comparison with previous results showed that, while in the higher-dose regions (e.g., the Spread-Out Bragg Peak, SOBP), the RBE for dicentrics was lower than that for cell survival. In the lower-dose regions (e.g., the fragmentation tail), the opposite trend was observed. This work suggests that, at least for some irradiation scenarios, calculating the biological effectiveness of a hadrontherapy beam solely based on the RBE for cell survival may lead to an underestimation of the risk of (late) damage to healthy tissues. More generally, following this work, BIANCA has gained the capability of providing RBE predictions not only for cell killing, but also for healthy tissue damage.


Asunto(s)
Muerte Celular , Aberraciones Cromosómicas/efectos de la radiación , Radioterapia de Iones Pesados/efectos adversos , Linfocitos/patología , Método de Montecarlo , Neoplasias/radioterapia , Efectividad Biológica Relativa , Biofisica , Humanos , Linfocitos/efectos de los fármacos
9.
Sci Rep ; 11(1): 2725, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526802

RESUMEN

The characteristic depth dose deposition of ion beams, with a maximum at the end of their range (Bragg peak) allows for local treatment delivery, resulting in better sparing of the adjacent healthy tissues compared to other forms of external beam radiotherapy treatments. However, the optimal clinical exploitation of the favorable ion beam ballistic is hampered by uncertainties in the in vivo Bragg peak position. Ionoacoustics is based on the detection of thermoacoustic pressure waves induced by a properly pulsed ion beam (e.g., produced by modern compact accelerators) to image the irradiated volume. Co-registration between ionoacoustics and ultrasound imaging offers a promising opportunity to monitor the ion beam and patient anatomy during the treatment. Nevertheless, the detection of the ionoacoustic waves is challenging due to very low pressure amplitudes and frequencies (mPa/kHz) observed in clinical applications. We investigate contrast agents to enhance the acoustic emission. Ultrasound microbubbles are used to increase the ionoacoustic frequency around the microbubble resonance frequency. Moreover, India ink is investigated as a possible mean to enhance the signal amplitude by taking advantage of additional optical photon absorption along the ion beam and subsequent photoacoustic effect. We report amplitude increase of up to 200% of the ionoacoustic signal emission in the MHz frequency range by combining microbubbles and India ink contrast agents.

10.
Front Med (Lausanne) ; 8: 697235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35547661

RESUMEN

Particle therapy relies on the advantageous dose deposition which permits to highly conform the dose to the target and better spare the surrounding healthy tissues and organs at risk with respect to conventional radiotherapy. In the case of treatments with heavier ions (like carbon ions already clinically used), another advantage is the enhanced radiobiological effectiveness due to high linear energy transfer radiation. These particle therapy advantages are unfortunately not thoroughly exploited due to particle range uncertainties. The possibility to monitor the compliance between the ongoing and prescribed dose distribution is a crucial step toward new optimizations in treatment planning and adaptive therapy. The Positron Emission Tomography (PET) is an established quantitative 3D imaging technique for particle treatment verification and, among the isotopes used for PET imaging, the 11C has gained more attention from the scientific and clinical communities for its application as new radioactive projectile for particle therapy. This is an interesting option clinically because of an enhanced imaging potential, without dosimetry drawbacks; technically, because the stable isotope 12C is successfully already in use in clinics. The MEDICIS-Promed network led an initiative to study the possible technical solutions for the implementation of 11C radioisotopes in an accelerator-based particle therapy center. We present here the result of this study, consisting in a Technical Design Report for a 11C Treatment Facility. The clinical usefulness is reviewed based on existing experimental data, complemented by Monte Carlo simulations using the FLUKA code. The technical analysis starts from reviewing the layout and results of the facilities which produced 11C beams in the past, for testing purposes. It then focuses on the elaboration of the feasible upgrades of an existing 12C particle therapy center, to accommodate the production of 11C beams for therapy. The analysis covers the options to produce the 11C atoms in sufficient amounts (as required for therapy), to ionize them as required by the existing accelerator layouts, to accelerate and transport them to the irradiation rooms. The results of the analysis and the identified challenges define the possible implementation scenario and timeline.

11.
Phys Rev Lett ; 125(23): 231802, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33337188

RESUMEN

Measuring the cosmic ray flux over timescales comparable to the age of the Solar System, ∼4.5 Gyr, could provide a new window on the history of the Earth, the Solar System, and even our Galaxy. We present a technique to indirectly measure the rate of cosmic rays as a function of time using the imprints of atmospheric neutrinos in "paleo-detectors," natural minerals that record damage tracks from nuclear recoils. Minerals commonly found on Earth are ≲1 Gyr old, providing the ability to look back across cosmic ray history on timescales of the same order as the age of the Solar System. Given a collection of differently aged samples dated with reasonable accuracy, this technique is particularly well-suited to measuring historical changes in the cosmic ray flux at Earth and is broadly applicable in astrophysics and geophysics.

12.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492909

RESUMEN

(1) Background: Cancer ion therapy is constantly growing thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands biophysical modeling. Up to now, only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM), and the "mixed-beam" model are used in clinics. (2) Methods: In this work, the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies, and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time, BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (central nervous system) late effects, which, in turn, are the main dose-limiting factors for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. (3) Results: Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. (4) Conclusions: This work provides the basis for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.


Asunto(s)
Cordoma/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Radioterapia de Iones Pesados , Terapia de Protones/métodos , Médula Espinal/metabolismo , Animales , Células CHO , Carbono/química , Supervivencia Celular/efectos de la radiación , Sistema Nervioso Central/efectos de la radiación , Cricetinae , Cricetulus , Bases de Datos Factuales , Humanos , Cinética , Método de Montecarlo , Radiometría , Ratas , Efectividad Biológica Relativa
13.
Phys Med ; 64: 123-131, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31515011

RESUMEN

With high-precision radiotherapy on the rise towards mainstream healthcare, comprehensive validation procedures are essential, especially as more sophisticated technologies emerge. In preparation for the upcoming translation of novel ions, case-/disease-specific ion-beam selection and advanced multi-particle treatment modalities at the Heidelberg Ion-beam Therapy Center (HIT), we quantify the accuracy limits in particle therapy treatment planning under complex heterogeneous conditions for the four ions (1H, 4He, 12C, 16O) using a Monte Carlo Treatment Planning platform (MCTP), an independent GPU-accelerated analytical dose engine developed in-house (FRoG) and the clinical treatment planning system (Syngo RT Planning). Attaching an anthropomorphic half-head Alderson RANDO phantom to entrance window of a dosimetric verification water tank, a cubic target spread-out Bragg peak (SOBP) was optimized using the MCTP to best resolve effects of anatomic heterogeneities on dose homogeneity. Subsequent forward calculations were executed in FRoG and Syngo. Absolute and relative dosimetry was performed in the experimental beam room using 1D and 2D array ionization chamber detectors. Mean absolute percent deviation in dose (|%Δ|) between predictions and PinPoint ionization chamber measurements were within ∼2% for all investigated ions for both MCTP and FRoG. For protons and carbon ions, |%Δ| values were ∼4% for Syngo. For the four ions, 3D-γ analysis (3%/3mm criteria) of FLUKA and FRoG presented mean passing rates of 97.0(±2.4)% and 93.6(±4.2)%. FRoG demonstrated satisfactory agreement with gold standard Monte Carlo simulation and measurement, superior to the commercial system. Our pre-clinical trial landmarks the first measurements taken in anthropomorphic settings for helium, carbon and oxygen ion-beam therapy.


Asunto(s)
Radioterapia de Iones Pesados/instrumentación , Método de Montecarlo , Fantasmas de Imagen , Humanos , Radiometría , Planificación de la Radioterapia Asistida por Computador
14.
Radiat Oncol ; 14(1): 123, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296232

RESUMEN

BACKGROUND: Helium (4He) ion beam therapy provides favorable biophysical characteristics compared to currently administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed with lighter protons. Despite these biophysical advantages, raster-scanning 4He ion therapy remains poorly explored e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological uncertainties. Therefore, prior to the upcoming 4He ion therapy program at the Heidelberg Ion-beam Therapy Center (HIT), we aimed to characterize the biophysical phenomena of 4He ion beams and various aspects of the associated models for clinical integration. METHODS: Characterization of biological effect for 4He ion beams was performed in both homogenous and patient-like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning 4He ion beams was devised in-house (FRoG). RESULTS: Our data indicate clinically relevant uncertainty of ±5-10% across different model simulations, highlighting their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues presented large RBE variability and uncertainty within the clinical dose range. CONCLUSIONS: Existing phenomenological and mechanistic/biophysical models were successfully integrated and validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning 4He ion beam therapy to the clinic.


Asunto(s)
Carcinoma de Células Renales/radioterapia , Helio/uso terapéutico , Neoplasias Renales/radioterapia , Método de Montecarlo , Planificación de la Radioterapia Asistida por Computador/métodos , Carcinoma de Células Renales/patología , Supervivencia Celular , Radioterapia de Iones Pesados , Humanos , Neoplasias Renales/patología , Dosificación Radioterapéutica , Efectividad Biológica Relativa , Células Tumorales Cultivadas
15.
Phys Med Biol ; 64(7): 075012, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30695766

RESUMEN

While Monte Carlo (MC) codes are considered as the gold standard for dosimetric calculations, the availability of user friendly MC codes suited for particle therapy is limited. Based on the FLUKA MC code and its graphical user interface (GUI) Flair, we developed an easy-to-use tool which enables simple and reliable simulations for particle therapy. In this paper we provide an overview of functionalities of the tool and with the presented clinical, proton and carbon ion therapy examples we demonstrate its reliability and the usability in the clinical environment and show its flexibility for research purposes. The first, easy-to-use FLUKA MC platform for particle therapy with GUI functionalities allows a user with a minimal effort and reduced knowledge about MC details to apply MC at their facility and is expected to enhance the popularity of the MC for both research and clinical quality assurance and commissioning purposes.


Asunto(s)
Cordoma/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Radioterapia de Iones Pesados/métodos , Método de Montecarlo , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radiometría , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
16.
Sci Rep ; 8(1): 14829, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287930

RESUMEN

Radiotherapy with protons and heavier ions landmarks a novel era in the field of high-precision cancer therapy. To identify patients most benefiting from this technologically demanding therapy, fast assessment of comparative treatment plans utilizing different ion species is urgently needed. Moreover, to overcome uncertainties of actual in-vivo physical dose distribution and biological effects elicited by different radiation qualities, development of a reliable high-throughput algorithm is required. To this end, we engineered a unique graphics processing unit (GPU) based software architecture allowing rapid and robust dose calculation. FRoG, Fast Recalculation on GPU, currently operates with four particle beams available at Heidelberg Ion Beam Therapy center, i.e., raster-scanning proton (1H), helium (4He), carbon (12C) and oxygen ions (16O). FRoG enables comparative analysis of different models for estimation of physical and biological effective dose in 3D within minutes and in excellent agreement with the gold standard Monte Carlo (MC) simulation. This is a crucial step towards development of next-generation patient specific radiotherapy.

17.
Phys Med Biol ; 63(14): 145018, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29873299

RESUMEN

In vivo range monitoring techniques are necessary in order to fully take advantage of the high dose gradients deliverable in hadrontherapy treatments. Positron emission tomography (PET) scanners can be used to monitor beam-induced activation in tissues and hence measure the range. The INSIDE (Innovative Solutions for In-beam DosimEtry in Hadrontherapy) in-beam PET scanner, installed at the Italian National Center of Oncological Hadrontherapy (CNAO, Pavia, Italy) synchrotron facility, has already been successfully tested in vivo during a proton therapy treatment. We discuss here the system performance evaluation with carbon ion beams, in view of future in vivo tests. The work is focused on the analysis of activity images obtained with therapeutic treatments delivered to polymethyl methacrylate (PMMA) phantoms, as well as on the test of an innovative and robust Monte Carlo simulation technique for the production of reliable prior activity maps. Images are reconstructed using different integration intervals, so as to monitor the activity evolution during and after the treatment. Three procedures to compare activity images are presented, namely Pearson correlation coefficient, Beam's eye view and overall view. Images of repeated irradiations of the same treatments are compared to assess the integration time necessary to provide reproducible images. The range agreement between simulated and experimental images is also evaluated, so as to validate the simulation capability to provide sound prior information. The results indicate that at treatment end, or at most 20 s afterwards, the range measurement is reliable within 1-2 mm, when comparing both different experimental sessions and data with simulations. In conclusion, this work shows that the INSIDE in-beam PET scanner performance is promising towards its in vivo test with carbon ions.


Asunto(s)
Radioterapia de Iones Pesados , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Terapia de Protones , Radiometría/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Radiometría/métodos , Sincrotrones
18.
Radiat Oncol ; 13(1): 2, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316969

RESUMEN

BACKGROUND: Due to their favorable physical and biological properties, helium ion beams are increasingly considered a promising alternative to proton beams for radiation therapy. Hence, this work aims at comparing in-silico the treatment of brain and ocular meningiomas with protons and helium ions, using for the first time a dedicated Monte Carlo (MC) based treatment planning engine (MCTP) thoroughly validated both in terms of physical and biological models. METHODS: Starting from clinical treatment plans of four patients undergoing proton therapy with a fixed relative biological effectiveness (RBE) of 1.1 and a fraction dose of 1.8 Gy(RBE), new treatment plans were optimized with MCTP for both protons (with variable and fixed RBE) and helium ions (with variable RBE) under the same constraints derived from the initial clinical plans. The resulting dose distributions were dosimetrically compared in terms of dose volume histograms (DVH) parameters for the planning target volume (PTV) and the organs at risk (OARs), as well as dose difference maps. RESULTS: In most of the cases helium ion plans provided a similar PTV coverage as protons with a consistent trend of superior OAR sparing. The latter finding was attributed to the ability of helium ions to offer sharper distal and lateral dose fall-offs, as well as a more favorable differential RBE variation in target and normal tissue. CONCLUSIONS: Although more studies are needed to investigate the clinical potential of helium ions for different tumour entities, the results of this work based on an experimentally validated MC engine support the promise of this modality with state-of-the-art pencil beam scanning delivery, especially in case of tumours growing in close proximity of multiple OARs such as meningiomas.


Asunto(s)
Helio/uso terapéutico , Neoplasias Meníngeas/radioterapia , Meningioma/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Iones/uso terapéutico , Método de Montecarlo , Efectividad Biológica Relativa
19.
J Med Imaging (Bellingham) ; 4(1): 011005, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27981069

RESUMEN

The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

20.
Oncotarget ; 7(35): 56676-56689, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27494855

RESUMEN

The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/ RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy.


Asunto(s)
Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Neoplasias/radioterapia , Oxígeno/uso terapéutico , Terapia de Protones/métodos , Células A549 , Linaje de la Célula , Supervivencia Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Humanos , Transferencia Lineal de Energía , Método de Montecarlo , Radiometría , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...