Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38255197

RESUMEN

Pancreatic surgery is extremely challenging and demands an extended learning curve to be executed with a low incidence of post-operative complications. The soft consistency of the human pancreas poses a primary challenge for pancreatic surgeons. This study aimed to analyze the preliminary mechanical characteristics of the human pancreas to develop a realistic synthetic phantom for surgical simulations in the near future. Pancreatic specimens, comprehensive of the pancreatic parenchyma and main pancreatic duct, were collected during pancreatic resections and analyzed through nano-bio-indentation (BioindenterTM UNHT3 Bio, Anton Paar GmbH, Graz, Austria) to measure the elastic modulus. Comparisons were made between slow and fast loading rates, immediate and post-freezing analyses, and multipoint indentations. The results demonstrated that a slow loading rate (30 µN/min), immediate analysis, and multipoint measurements are crucial for obtaining accurate values of the elastic modulus of the human pancreas (1.40 ± 0.47 kPa). In particular, the study revealed that analysis after freezing could impact the outcomes of the indentation. Moreover, the study suggested that both the pancreatic parenchyma and the main pancreatic duct should be analyzed to achieve a more precise and comprehensive definition of the. mechanical features of the pancreas. These preliminary findings represent the initial steps toward defining the consistency and mechanical characteristics of human pancreatic tissue with the goal of creating a realistic synthetic phantom.

2.
Animals (Basel) ; 13(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37684955

RESUMEN

Investigations of population structuring in wild species are fundamental to complete the bigger picture defining their ecological and biological roles in the marine realm, to estimate their recovery capacity triggered by human disturbance and implement more efficient management strategies for fishery resources. The Blackspot Seabream (Pagellus bogaraveo, Brünnich 1768) is a commercially valuable deep-water fish highly exploited over past decades. Considering its exploitation status, deepening the knowledge of intraspecific variability, genetic diversity, and differentiation using high-performing molecular markers is considered an important step for a more effective stock assessment and fishery management. With one of the largest efforts conceived of and completed by countries overlooking the Atlantic and Mediterranean coasts in recent years, a total of 320 individuals were collected from different fishing grounds in the Mediterranean Sea and Atlantic Ocean and analysed using 29 microsatellite loci. We applied multiple statistical approaches to investigate the species' connectivity and population structure across most of its described distribution area. Considering the incomplete knowledge regarding the migratory behaviour of adults, here we suggest the importance of egg and larval dispersal in sustaining the observed genetic connectivity on such a large geographical scale.

3.
Animals (Basel) ; 13(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760300

RESUMEN

The present study focused on the three species of electric rays known to occur in the Mediterranean Sea: Torpedo torpedo, Torpedo marmorata and Tetronarce nobiliana. Correct identification of specimens is needed to properly assess the impact of fisheries on populations and species. Unfortunately, torpedoes share high morphological similarities, boosting episodes of field misidentification. In this context, genetic data was used (1) to identify specimens caught during fishing operations, (2) to measure the diversity among and within these species, and (3) to shed light on the possible occurrence of additional hidden species in the investigated area. New and already published sequences of COI and NADH2 mitochondrial genes were analyzed, both at a small scale along the Sardinian coasts (Western Mediterranean) and at a large scale in the whole Mediterranean Sea. High levels of genetic diversity were found in Sardinian populations, being significantly different from other areas of the Eastern Mediterranean Sea due to the biotic and abiotic factors here discussed. Sardinian torpedoes can hence be indicated as priority populations/areas to be protected within the Mediterranean Sea. Moreover, sequence data confirmed that only the three species occur in the investigated area. The application of several 'species-delimitation' methods found evidence of cryptic species in the three species outside the Mediterranean Sea, as well as in other genera/families, suggesting the urgent need for future studies and a comprehensive revision of the order Torpediniformes for its effective conservation.

4.
Animals (Basel) ; 13(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37443937

RESUMEN

Despite a high species diversity, skates (Rajiformes) exhibit remarkably conservative morphology and ecology. Limited trait variations occur within and between species, and cryptic species have been reported among sister and non-sister taxa, suggesting that species complexes may be subject to stabilising selection. Three sibling species are currently recognised in the Raja miraletus complex: (i) R. miraletus occurring along the Portuguese and Mediterranean coasts, (ii) R. parva in the Central-Eastern Atlantic off West Africa and (iii) R. ocellifera in the Western Indian Ocean off South Africa. In the present study, the genetic variation at mitochondrial and nuclear markers was estimated in the species complex by analysing 323 individuals sampled across most of its geographical distribution area to test the hypothesis that restricted gene flow and genetic divergence within species reflect known climate and bio-oceanographic discontinuities. Our results support previous morphological studies and confirm the known taxonomic boundaries of the three recognised species. In addition, we identified multiple weakly differentiated clades in the Northeastern Atlantic Ocean and Mediterranean, at least two additional cryptic taxa off Senegal and Angola, a pronounced differentiation of ancient South African clades. The hidden genetic structure presented here may represent a valuable support to species' conservation action plans.

7.
Life (Basel) ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206388

RESUMEN

Conservation and long-term management plans of marine species need to be based upon the universally recognized key-feature of species identity. This important assignment is particularly challenging in skates (Rajiformes) in which the phenotypic similarity between some taxa and the individual variability in others, hampers accurate species identification. Here, 432 individual skate samples collected from four major ocean areas of the Atlantic were barcoded and taxonomically analysed. A BOLD project ELASMO ATL was implemented with the aim of establishing a new fully available and well curated barcode library containing both biological and molecular information. The evolutionary histories of the 38 skate taxa were estimated with two concatenated mitochondrial markers (COI and NADH2) through Maximum Likelihood and Bayesian inference. New evolutionary lineages within the genus Raja were discovered off Angola, where paleogeographic history coupled with oceanographic discontinuities could have contributed to the establishment of isolated refugia, playing a fundamental role among skates' speciation events. These data successfully resolved many taxonomic ambiguities, identified cryptic diversity within valid species and demonstrated a highly cohesive monophyletic clustering among the order, laying the background for further inference of evolutionary patterns suitable for addressing management and conservation issues.

8.
Foods ; 9(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992465

RESUMEN

Canned tuna is one of the most widely traded seafood products internationally and is of growing demand. There is an increasing concern over the vulnerability of canned tuna supply chains to species mislabelling and fraud. Extensive processing conditions in canning operations can lead to the degradation and fragmentation of DNA, complicating product traceability. We here employed a forensically validated DNA barcoding tool (cytochrome b partial sequences) to assess the effects of canning processes on DNA degradation and the identification of four tropical tuna species (yellowfin, bigeye, skipjack and longtail tuna) collected on a global scale, along their commercial chains. Each species was studied under five different canning processes i.e., freezing, defrosting, cooking, and canning in oil and brine, in order to investigate how these affect DNA-based species identification and traceability. The highest percentage of nucleotide substitutions were observed after brine-canning operations and were greatest for yellowfin and skipjack tuna. Overall, we found that DNA degradation significantly increased along the tuna canning process for most specimens. Consequently, most of the specimens canned in oil or brine were misidentified due to the high rate of nucleotide substitution in diagnostic sequences.

9.
PeerJ ; 6: e5560, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30245927

RESUMEN

BACKGROUND: The unique and complex paleoclimatic and paleogeographic events which affected the Mediterranean Sea since late Miocene deeply influenced the distribution and evolution of marine organisms and shaped their genetic structure. Following the Messinian salinity crisis and the sea-level fluctuations during the Pleistocene, several Mediterranean marine species developed deep genetic differentiation, and some underwent rapid radiation. Here, we consider two of the most prioritized groups for conservation in the light of their evolutionary history: sharks and rays (elasmobranchs). This paper deals with a comparative multispecies analysis of phylogeographic structure and historical demography in two pairs of sympatric, phylogenetically- and ecologically-related elasmobranchs, two scyliorhinid catsharks (Galeus melastomus, Scyliorhinus canicula) and two rajid skates (Raja clavata, Raja miraletus). Sampling and experimental analyses were designed to primarily test if the Sicilian Channel can be considered as effective eco-physiological barrier for Mediterranean demersal sympatric elasmobranchs. METHODS: The phylogeography and the historical demography of target species were inferred by analysing the nucleotide variation of three mitochondrial DNA markers (i.e., partial sequence of COI, NADH2 and CR) obtained from a total of 248 individuals sampled in the Western and Eastern Mediterranean Sea as well as in the adjacent northeastern Atlantic Ocean. Phylogeographic analysis was performed by haplotype networking and testing spatial genetic differentiation of samples (i.e., analysis of molecular variance and of principal components). Demographic history of Mediterranean populations was reconstructed using mismatch distribution and Bayesian Skyline Plot analyses. RESULTS: No spatial genetic differentiation was identified in either catshark species, while phylogeographic structure of lineages was identified in both skates, with R. miraletus more structured than R. clavata. However, such structuring of skate lineages was not consistent with the separation between Western and Eastern Mediterranean. Sudden demographic expansions occurred synchronously during the upper Pleistocene (40,000-60,000 years ago) in both skates and G. melastomus, likely related to optimal environmental conditions. In contrast, S. canicula experienced a slow and constant increase in population size over the last 350,000 years. DISCUSSION: The comparative analysis of phylogeographic and historical demographic patterns for the Mediterranean populations of these elasmobranchs reveals that historical phylogeographic breaks have not had a large impact on their microevolution. We hypothesize that interactions between environmental and ecological/physiological traits may have been the driving force in the microevolution of these demersal elasmobranch species in the Mediterranean rather than oceanographic barriers.

10.
PLoS One ; 12(1): e0170244, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107413

RESUMEN

Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera), including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions.


Asunto(s)
Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Peces/genética , Animales , Peces/clasificación , Región Mediterránea , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...