Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Stem Cell ; 30(12): 1597-1609.e8, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016468

RESUMEN

We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Células-Madre Neurales , Humanos , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple/terapia , Trasplante Autólogo
2.
Stem Cell Res ; 67: 103023, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638628

RESUMEN

Familial Hypocalciuric Hypercalcemia (FHH1) is a rare autosomal dominant disease with low penetrance, caused by inactivating mutations of the calcium-sensing receptor (CaSR) gene, characterized by significant hypercalcemia, inappropriately normal serum PTH levels and a low urinary calcium level. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a previously identified heterozygous mutation, a p.T972M amino acid substitution in cytoplasmic tail of CasR, were produced using a virus, xeno-free and non-integrative protocol.


Asunto(s)
Hipercalcemia , Células Madre Pluripotentes Inducidas , Humanos , Mutación Puntual , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Hipercalcemia/genética , Mutación , Calcio
3.
Animals (Basel) ; 12(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428378

RESUMEN

Animal models currently used to test the efficacy and safety of cell therapies, mainly murine models, have limitations as molecular, cellular, and physiological mechanisms are often inherently different between species, especially in the brain. Therefore, for clinical translation of cell-based medicinal products, the development of alternative models based on human neural cells may be crucial. We have developed an in vitro model of transplantation into human brain organoids to study the potential of neural stem cells as cell therapeutics and compared these data with standard xenograft studies in the brain of immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Neural stem cells showed similar differentiation and proliferation potentials in both human brain organoids and mouse brains. Our results suggest that brain organoids can be informative in the evaluation of cell therapies, helping to reduce the number of animals used for regulatory studies.

4.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411275

RESUMEN

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Asunto(s)
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patología , Haploinsuficiencia/genética , Metabolismo de los Lípidos/genética , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Fenotipo , Autofagia/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Lípidos
5.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362211

RESUMEN

Translation of cell therapies into clinical practice requires the adoption of robust production protocols in order to optimize and standardize the manufacture and cryopreservation of cells, in compliance with good manufacturing practice regulations. Between 2012 and 2020, we conducted two phase I clinical trials (EudraCT 2009-014484-39, EudraCT 2015-004855-37) on amyotrophic lateral sclerosis secondary progressive multiple sclerosis patients, respectively, treating them with human neural stem cells. Our production process of a hNSC-based medicinal product is the first to use brain tissue samples extracted from fetuses that died in spontaneous abortion or miscarriage. It consists of selection, isolation and expansion of hNSCs and ends with the final pharmaceutical formulation tailored to a specific patient, in compliance with the approved clinical protocol. The cells used in these clinical trials were analyzed in order to confirm their microbiological safety; each batch was also tested to assess identity, potency and safety through morphological and functional assays. Preclinical, clinical and in vitro nonclinical data have proved that our cells are safe and stable, and that the production process can provide a high level of reproducibility of the cultures. Here, we describe the quality control strategy for the characterization of the hNSCs used in the above-mentioned clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células-Madre Neurales , Humanos , Reproducibilidad de los Resultados , Criopreservación , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Control de Calidad
6.
Stem Cell Res ; 63: 102846, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35759972

RESUMEN

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.


Asunto(s)
Iduronato Sulfatasa , Células Madre Pluripotentes Inducidas , Mucopolisacaridosis II , Glicosaminoglicanos , Humanos , Iduronato Sulfatasa/genética , Ácido Idurónico , Células Madre Pluripotentes Inducidas/patología , Mucopolisacaridosis II/genética , Mucopolisacaridosis II/patología , Fenotipo
7.
Stem Cell Res ; 63: 102835, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35714448

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease affecting both upper and lower motoneurons. The transactive response DNA binding protein (TARDBP) gene, encoding for TDP-43, is one of the most commonly mutated gene associated with familial cases of ALS (10%). We generated a human induced pluripotent stem cell (hiPSC) line from the fibroblasts of an asymptomatic subject carrying the TARDBP p.G376D mutation. This mutation is very rare and was described in a large Apulian family, in which all ALS affected members are carriers of the mutation. The subject here described is the first identified asymptomatic carrier of the mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética
8.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35624679

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of the upper and lower motor neurons (MNs). About 10% of patients have a family history (familial, fALS); however, most patients seem to develop the sporadic form of the disease (sALS). SOD1 (Cu/Zn superoxide dismutase-1) is the first studied gene among the ones related to ALS. Mutant SOD1 can adopt multiple misfolded conformation, lose the correct coordination of metal binding, decrease structural stability, and form aggregates. For all these reasons, it is complicated to characterize the conformational alterations of the ALS-associated mutant SOD1, and how they relate to toxicity. In this work, we performed a multilayered study on fibroblasts derived from two ALS patients, namely SOD1L145F and SOD1S135N, carrying the p.L145F and the p.S135N missense variants, respectively. The patients showed diverse symptoms and disease progression in accordance with our bioinformatic analysis, which predicted the different effects of the two mutations in terms of protein structure. Interestingly, both mutations had an effect on the fibroblast energy metabolisms. However, while the SOD1L145F fibroblasts still relied more on oxidative phosphorylation, the SOD1S135N fibroblasts showed a metabolic shift toward glycolysis. Our study suggests that SOD1 mutations might lead to alterations in the energy metabolism.

9.
Methods Mol Biol ; 2389: 57-66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34558001

RESUMEN

NSCs have been demonstrated to be very useful in grafts into the mammalian central nervous system to investigate the exploitation of NSC for the therapy of neurodegenerative disorders in animal models of neurodegenerative diseases. To push cell therapy in CNS on stage of clinical application, it is necessary to establish a continuous and standardized, clinical grade (i.e., produced following the good manufacturing practice guidelines) human neural stem cell lines.In this chapter we will illustrate some of the protocols for the production and characterization routinely used into our GMP "cell factory" for the production of "clinical grade" human neural stem cell lines already in use in clinical trials on neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS- Clinicaltrials.gov number NCT01640067) and secondary progressive multiple sclerosis (SPMS- Clinicaltrials.gov number NCT03282760).


Asunto(s)
Células-Madre Neurales , Esclerosis Amiotrófica Lateral/terapia , Animales , Células Cultivadas , Sistema Nervioso Central , Feto , Humanos , Enfermedades Neurodegenerativas , Trasplante de Células Madre
10.
Stem Cell Res ; 53: 102356, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34087986

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative condition with phenotypic and genetic heterogeneity. It is characterized by the selective vulnerability and the progressive loss of the neural population. Here, an induced pluripotent stem cell (iPSC) line was generated from dermal fibroblasts of an individual carrying the p.G376D mutation in the TDP-43 protein. Fibroblasts were reprogrammed using non-integrating episomal plasmids. There were no karyotype abnormalities, and iPSCs successfully differentiated into all three germ layers. This cell line may prove useful in the study of the pathogenic mechanisms that underpin ALS syndrome.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Esclerosis Amiotrófica Lateral/genética , Diferenciación Celular , Línea Celular , Fibroblastos , Humanos , Mutación
11.
J Biosci ; 462021.
Artículo en Inglés | MEDLINE | ID: mdl-33709965

RESUMEN

Paraneoplastic neurological syndromes (PNS) are a group of rare and severe immune-mediated disorders that affect the nervous system in patients with cancer. The best way to diagnose a paraneoplastic neurological disorder is to identify anti-onconeural protein antibodies that are specifically associated with various cancers. The aim of this multicentric study was to clinically and immunologically characterize patients with PNS and study their association with cancer. Patients suspected to have PNS were enrolled from various clinical centres and were characterized immunologically. This study population consisted of 112 patients. Onset of PNS was mainly subacute (76 %). PNS patients had various neurological disorders and symptoms. PNS developed before the diagnosis of cancer in 28 definite PNS patients and in six suspected PNS patients. The most frequent autoantibodies detected in PNS patients were anti-Hu and anti-Yo. One definite PNS patient with cerebellar syndrome had anti-Tr antibody and seven patients had atypical antibodies. The literature associates these antibodies with various neurological disorders and cancers. Our observations confirm the important role of autoantibodies in PNS and their importance for the early diagnosis of cancer in PNS patients.


Asunto(s)
Autoanticuerpos/inmunología , Inmunofenotipificación , Neoplasias/inmunología , Síndromes Paraneoplásicos del Sistema Nervioso/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/epidemiología , Neoplasias/patología , Sistema Nervioso/patología , Síndromes Paraneoplásicos del Sistema Nervioso/complicaciones , Síndromes Paraneoplásicos del Sistema Nervioso/epidemiología , Síndromes Paraneoplásicos del Sistema Nervioso/patología , Ratas
12.
J Clin Med ; 9(10)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993010

RESUMEN

Paraneoplastic neurological syndromes (PNSs) are a heterogeneous group of rare immune-mediated diseases associated with cancer. The aim of this study was to investigate the prevalence of PNSs in the province of Brescia. PNS prevalence was calculated using the Lombardy regional hospital admission records from 1998 to 2003. We used the website "Epidemiologic and Economic Atlas of Hospital Activities in Lombardy" and the "International Statistical Classification of Diseases and Related Health Problems". In the province of Brescia, we found 54 cases of PNSs, 29 with subacute neuropathies, five with paraneoplastic cerebellar degeneration and 20 with encephalomyelitis. Peripheral nervous system diseases were the most frequent neurological disorders. In Lombardy, the number of PNS patients admitted was 322 (133 with encephalomyelitis, 21 with paraneoplastic cerebellar degeneration, 166 with polyneuropathies and two with optic degeneration). In Lombardy, the prevalence of PNSs was 25 in 100,000 hospital admissions and 5.92 in 100,000 for the Lombardy population. Our results show a discrete presence of PNS patients in the province of Brescia and in the Lombardy region as a whole.

13.
Stem Cell Res ; 47: 101924, 2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32739880

RESUMEN

Among the known causative genes of familial ALS, SOD1mutation is one of the most common. It encodes for the ubiquitous detoxifying copper/zinc binding SOD1 enzyme, whose mutations selectively cause motor neuron death, although the mechanisms are not as yet clear. What is known is that mutant-mediated toxicity is not caused by loss of its detoxifying activity but by a gain-of-function. In order to better understand the pathogenic mechanisms of SOD1 mutation, a human induced pluripotent stem cell (hiPSC) line was generated from the somatic cells of a female patient carrying a missense variation in SOD1 (L145F).

14.
Stem Cells Transl Med ; 9(9): 1085-1101, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32475061

RESUMEN

Intraventricular hemorrhage is a common cause of morbidity and mortality in premature infants. The rupture of the germinal zone into the ventricles entails loss of neural stem cells and disturbs the normal cytoarchitecture of the region, compromising late neurogliogenesis. Here we demonstrate that neural stem cells can be easily and robustly isolated from the hemorrhagic cerebrospinal fluid obtained during therapeutic neuroendoscopic lavage in preterm infants with severe intraventricular hemorrhage. Our analyses demonstrate that these neural stem cells, although similar to human fetal cell lines, display distinctive hallmarks related to their regional and developmental origin in the germinal zone of the ventral forebrain, the ganglionic eminences that give rise to interneurons and oligodendrocytes. These cells can be expanded, cryopreserved, and differentiated in vitro and in vivo in the brain of nude mice and show no sign of tumoral transformation 6 months after transplantation. This novel class of neural stem cells poses no ethical concerns, as the fluid is usually discarded, and could be useful for the development of an autologous therapy for preterm infants, aiming to restore late neurogliogenesis and attenuate neurocognitive deficits. Furthermore, these cells represent a valuable tool for the study of the final stages of human brain development and germinal zone biology.


Asunto(s)
Hemorragia Cerebral/líquido cefalorraquídeo , Recien Nacido Prematuro/líquido cefalorraquídeo , Células-Madre Neurales/patología , Antígeno AC133/metabolismo , Animales , Hemorragia Cerebral/genética , Endoscopía , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Desnudos , Células-Madre Neurales/trasplante
15.
Int J Mol Sci ; 21(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182809

RESUMEN

Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.


Asunto(s)
Sistema Nervioso Central/fisiología , Cromosomas Humanos Par 15/genética , Variaciones en el Número de Copia de ADN/genética , Enfermedades Genéticas Congénitas/genética , Inestabilidad Genómica/genética , Células Madre Pluripotentes Inducidas/fisiología , Animales , Reprogramación Celular/genética , Humanos
16.
J Intensive Care Med ; 35(3): 279-283, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29141526

RESUMEN

PURPOSE: Gastrointestinal dysfunction and failure (GID and GIF) in critically ill patients are a common, relevant, and underestimated complications in ICU patients. The aims of this study were (1) to determine plasmatic levels of citrulline, glutamine, and arginine as markers of GID/GIF in critically ill patients with or without GID/GIF with or without multiple organ failure (MOF) and (2) to assess the role of intra-abdominal hypertension in these patient groups. MATERIALS AND METHODS: This is a 1-year, monocentric (Italian hospital), prospective observational study. Inclusion criteria were adult patients with GID/GIF, with or without MOF. The GIF score was daily evaluated in 39 critically ill patients. Amino acids were measured at the time of GID or GIF. RESULTS: We enrolled 39 patients. Nine patients developed GID and 7 GIF; 6 of patients with GID/GIF developed MOF. Citrulline was lower (P < .001) in patients with GID/GIF (11.3 [4.4] µmol/L), compared to patients without GID/GIF (22.4 [6.8] µmol/L); likewise, glutamine was lower in patients with GID/GIF, whereas arginine was nonstatistically different between the 2 groups. Intra-abdominal pressure was higher in patients affected by MOF (13.0 [2.2] mm Hg) than in patients with GIF/GID without MOF (9.6 [2.6] mm Hg) and compared to patients without GID/GIF (7.2 [2.1] mm Hg). CONCLUSIONS: Both GID and GIF in critically ill patients are associated with low levels of citrulline and glutamine, which could be considered as markers of small bowel dysfunction. The higher the GIF score, the lower the citrulline levels. Patients affected by MOF had higher levels of intra-abdominal pressure.


Asunto(s)
Citrulina/sangre , Enfermedades Gastrointestinales/sangre , Insuficiencia Multiorgánica/sangre , Puntuaciones en la Disfunción de Órganos , Anciano , Arginina/sangre , Biomarcadores/sangre , Enfermedad Crítica , Femenino , Enfermedades Gastrointestinales/complicaciones , Enfermedades Gastrointestinales/mortalidad , Glutamina/sangre , Humanos , Unidades de Cuidados Intensivos , Hipertensión Intraabdominal/sangre , Hipertensión Intraabdominal/etiología , Hipertensión Intraabdominal/mortalidad , Masculino , Persona de Mediana Edad , Insuficiencia Multiorgánica/complicaciones , Insuficiencia Multiorgánica/mortalidad , Estudios Prospectivos
17.
Stem Cell Res ; 40: 101551, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31493762

RESUMEN

Dentato-Rubral-pallidoluysian atrophy (DRPLA) is a rare autosomal, dominant, progressive neurodegenerative disease that causes involuntary movements, mental and emotional problems. DRPLA is caused by a mutation in the ATN1 gene that encodes for an abnormal polyglutamine stretch in the atrophin-1 protein. DRPLA is most common in the Japanese population, where it has an estimated incidence of 2 to 7 per million people. This condition has also been seen in families from North America and Europe. We obtained a reprogrammed iPSC line from a Caucasian patient with a juvenile onset of the disease, carrying 64 CAG repeat expansion in the ATN1 gene.


Asunto(s)
Línea Celular/citología , Células Madre Pluripotentes Inducidas/citología , Epilepsias Mioclónicas Progresivas/fisiopatología , Proteínas del Tejido Nervioso/genética , Diferenciación Celular , Línea Celular/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Mutación , Epilepsias Mioclónicas Progresivas/genética , Epilepsias Mioclónicas Progresivas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Expansión de Repetición de Trinucleótido , Adulto Joven
18.
Stem Cell Res ; 38: 101480, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31202121

RESUMEN

Joubert syndrome (JS) is an autosomal recessive neurodevelopmental disorder, characterized by congenital cerebellar and brainstem defects, belonging to the group of disorders known as ciliopathies, which are caused by mutations in genes encoding proteins of the primary cilium and basal body. Human induced pluripotent stem cells (hiPSCs) from a patient carrying a homozygous missense mutation (c.2168G > A) in AHI1, the first gene to be associated with JS, were produced using a virus-free protocol.


Asunto(s)
Anomalías Múltiples , Proteínas Adaptadoras del Transporte Vesicular , Cerebelo/anomalías , Anomalías del Ojo , Homocigoto , Células Madre Pluripotentes Inducidas , Enfermedades Renales Quísticas , Mutación Missense , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adulto , Línea Celular , Cerebelo/metabolismo , Cerebelo/patología , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Masculino , Retina/metabolismo , Retina/patología
19.
Stem Cells Transl Med ; 8(9): 887-897, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31104357

RESUMEN

The main objective of this phase I trial was to assess the feasibility and safety of microtransplanting human neural stem cell (hNSC) lines into the spinal cord of patients with amyotrophic lateral sclerosis (ALS). Eighteen patients with a definite diagnosis of ALS received microinjections of hNSCs into the gray matter tracts of the lumbar or cervical spinal cord. Patients were monitored before and after transplantation by clinical, psychological, neuroradiological, and neurophysiological assessment. For up to 60 months after surgery, none of the patients manifested severe adverse effects or increased disease progression because of the treatment. Eleven patients died, and two underwent tracheotomy as a result of the natural history of the disease. We detected a transitory decrease in progression of ALS Functional Rating Scale Revised, starting within the first month after surgery and up to 4 months after transplantation. Our results show that transplantation of hNSC is a safe procedure that causes no major deleterious effects over the short or long term. This study is the first example of medical transplantation of a highly standardized cell drug product, which can be reproducibly and stably expanded ex vivo, comprising hNSC that are not immortalized, and are derived from the forebrain of the same two donors throughout this entire study as well as across future trials. Our experimental design provides benefits in terms of enhancing both intra- and interstudy reproducibility and homogeneity. Given the potential therapeutic effects of the hNSCs, our observations support undertaking future phase II clinical studies in which increased cell dosages are studied in larger cohorts of patients. Stem Cells Translational Medicine 2019;8:887&897.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Células-Madre Neurales/trasplante , Adulto , Anciano , Esclerosis Amiotrófica Lateral/patología , Encéfalo/diagnóstico por imagen , Factor Neurotrófico Derivado del Encéfalo/análisis , Femenino , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Humanos , Inyecciones Espinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Dolor/etiología , Proyectos Piloto , Médula Espinal/diagnóstico por imagen , Trasplante de Células Madre/efectos adversos , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/análisis , Adulto Joven
20.
Cell Death Dis ; 10(5): 345, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024007

RESUMEN

Stem cells are emerging as a therapeutic option for incurable diseases, such as Amyotrophic Lateral Sclerosis (ALS). However, critical issues are related to their origin as well as to the need to deepen our knowledge of the therapeutic actions exerted by these cells. Here, we investigate the therapeutic potential of clinical-grade human neural stem cells (hNSCs) that have been successfully used in a recently concluded phase I clinical trial for ALS patients (NCT01640067). The hNSCs were transplanted bilaterally into the anterior horns of the lumbar spinal cord (four grafts each, segments L3-L4) of superoxide dismutase 1 G93A transgenic rats (SOD1 rats) at the symptomatic stage. Controls included untreated SOD1 rats (CTRL) and those treated with HBSS (HBSS). Motor symptoms and histological hallmarks of the disease were evaluated at three progressive time points: 15 and 40 days after transplant (DAT), and end stage. Animals were treated by transient immunosuppression (for 15 days, starting at time of transplantation). Under these conditions, hNSCs integrated extensively within the cord, differentiated into neural phenotypes and migrated rostro-caudally, up to 3.77 ± 0.63 cm from the injection site. The transplanted cells delayed decreases in body weight and deterioration of motor performance in the SOD1 rats. At 40DAT, the anterior horns at L3-L4 revealed a higher density of motoneurons and fewer activated astroglial and microglial cells. Accordingly, the overall survival of transplanted rats was significantly enhanced with no rejection of hNSCs observed. We demonstrated that the beneficial effects observed after stem cell transplantation arises from multiple events that counteract several aspects of the disease, a crucial feature for multifactorial diseases, such as ALS. The combination of therapeutic approaches that target different pathogenic mechanisms of the disorder, including pharmacology, molecular therapy and cell transplantation, will increase the chances of a clinically successful therapy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Células-Madre Neurales/trasplante , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/terapia , Animales , Diferenciación Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Inflamación/patología , Estimación de Kaplan-Meier , Masculino , Microglía/citología , Microglía/metabolismo , Neuronas Motoras/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Médula Espinal/patología , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...