Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(29)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37019100

RESUMEN

The increasing energy demand and the ever more pressing need for clean technologies of energy conversion pose one of the most urgent and complicated issues of our age. Thermoelectricity, namely the direct conversion of waste heat into electricity, is a promising technique based on a long-standing physical phenomenon, which still has not fully developed its potential, mainly due to the low efficiency of the process. In order to improve the thermoelectric performance, a huge effort is being made by physicists, materials scientists and engineers, with the primary aims of better understanding the fundamental issues ruling the improvement of the thermoelectric figure of merit, and finally building the most efficient thermoelectric devices. In this Roadmap an overview is given about the most recent experimental and computational results obtained within the Italian research community on the optimization of composition and morphology of some thermoelectric materials, as well as on the design of thermoelectric and hybrid thermoelectric/photovoltaic devices.

2.
Nanotechnology ; 34(31)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37116478

RESUMEN

The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.

3.
Nanotechnology ; 34(15)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36623314

RESUMEN

Ultrafast high-temperature sintering (UHS) is a recently proposed technique able to synthesize and sinter dense materials within seconds. Although UHS has already proved its effectivity with a large set of materials, spanning from refractory ceramics to complex metal alloys, any application to thermoelectric materials is today still lacking. Mg2Si is a well-established thermoelectric material. It is based on wide available non-critical raw materials, it is non-toxic, lightweight and it expresses its best thermoelectric performances in the intermediate temperature range (up to about 600 °C). Mg2Si is typically produced with powder processing by Spark Plasma Sintering (SPS), partially limiting its widespread diffusion also due to the costly production technique. Here we present a simple route to sinter Mg2Si pressed powders by UHS. The process allowed to obtain dense samples (with relative densities >95%) with 20 s heating up to about 1080 °C followed by a rapid free cooling, a total thermal history below 1 min, and with energy demand at the Wh scale. The high process rate proved its efficacy in preventing grain growth and in avoiding any significant Mg evaporation. A full thermoelectric functional characterization is presented for Mg2Si and Bi-doped Mg2Si, together with a comparison with SPS-produced properties.

4.
J Nanosci Nanotechnol ; 17(3): 1601-607, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-29693978

RESUMEN

Waste heat recovery is one of the suitable industrial applications of thermoelectrics. Thermoelectric generators (TEG) are used, commonly, only for low-mid size power generation systems. The low efficiency of thermoelectric modules generally does not encourage their combination with high power and temperature sources, such as gas turbines. Nevertheless, the particular features of thermoelectric technology (no moving parts, scalability, reliability, low maintenance costs) are attractive for many applications. In this work, the feasibility of the integration of a TE generator into a cogeneration system is evaluated. The cogeneration system consists of a microturbine and heat exchangers for the production of electrical and thermal energy. The aim is to improve electric power generation by using TE modules and the "free" thermal energy supplied by the cogeneration system, through the exhaust pipe of the microturbine. Three different solutions for waste heat recovery from the exhausts gas are evaluated, from the fluid dynamics and heat transfer point of view, to find out a suitable design strategy for a combined power generation system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...