Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(2): 936-949, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38299869

RESUMEN

In this study, a recently reported Ti-based metallic glass (MG), without any toxic element, but with a significant amount of metalloid (Si-Ge-B, 18 atom %) and minor soft element (Sn, 2 atom %), was produced in ribbon form using conventional single-roller melt-spinning. The produced Ti60Zr20Si8Ge7B3Sn2 ribbons were investigated by differential scanning calorimetry and X-ray diffraction to confirm their amorphous structure, and their corrosion properties were further investigated by open-circuit potential and cyclic polarization tests. The ribbon's surface was functionalized by tannic acid, a natural plant-based polyphenol, to enhance its performance in terms of corrosion prevention and antimicrobial efficacy. These properties can potentially be exploited in the premucosal parts of dental implants (abutments). The Folin and Ciocalteu test was used for the quantification of tannic acid (TA) grafted on the ribbon surface and of its redox activity. Fluorescent microscopy and ζ-potential measurements were used to confirm the presence of TA on the surfaces of the ribbons. The cytocompatibility evaluation (indirect and direct) of TA-functionalized Ti60Zr20Si8Ge7B3Sn2 MG ribbons toward primary human gingival fibroblast demonstrated that no significant differences in cell viability were detected between the functionalized and as-produced (control) MG ribbons. Finally, the antibacterial investigation of TA-functionalized samples against Staphylococcus aureus demonstrated the specimens' antimicrobial properties, shown by scanning electron microscopy images after 24 h, presenting a few single colonies remaining on their surfaces. The thickness of bacterial aggregations (biofilm-like) that were formed on the surface of the as-produced samples reduced from 3.5 to 1.5 µm.


Asunto(s)
Pilares Dentales , Polifenoles , Titanio , Humanos , Titanio/química , Vidrio/química , Antibacterianos/farmacología
2.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255511

RESUMEN

Magnesium alloys are promising materials for bioresorbable implants that will improve patient life and reduce healthcare costs. However, their clinical use is prevented by the rapid degradation and corrosion of magnesium, which leads to a fast loss of mechanical strength and the formation of by-products that can trigger tissue inflammation. Here, a tannic acid coating is proposed to control the degradation of AZ31 and AZ91 alloys, starting from a previous study by the authors on AZ91. The coatings on the two materials were characterized both by the chemical (EDS, FTIR, XPS) and the morphological (SEM, confocal profilometry) point of view. Static degradation tests in PBS and electrochemical measurements in different solutions showed that the protective performances of the tannic acid coatings are strongly affected by the presence of cracks. The presence of fractures in the protective layer generates galvanic couples between the coating scales and the metal, worsening the corrosion resistance. Although degradation control was not achieved, useful insights on the degradation mechanisms of coated Mg surfaces were obtained, as well as key points for future studies: it resulted that the absence of cracks in protective coatings is of uttermost importance for novel biodegradable implants with proper degradation kinetics.

3.
Biomed Mater ; 19(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38215484

RESUMEN

Magnesium ions, MgO nanoparticles and thin films, magnesium alloys and cerium compounds are materials intensively studied due to their corrosion protection, antibacterial and pharmacological properties. In this work, we have designed, prepared and investigated, novel thin films of MgO doped with cerium, deposited on Mg alloy (AZ31) for temporary implants, in order to enhance their life time. More precisely, we report on microstructure and corrosion behavior of MgO pure and doped with 0.1 at % Ce films, fabricated by sol-gel route coupled with spin-coating technique, on AZ31 alloy substrate. A modified sol-gel method that start from magnesium acetylacetonate, cerium nitrate and 2-methoxyethanol (as a stabilizer for the sol) was been used successfully for cerium doped MgO sol precursor preparation. The structure and morphology of the surface of the coatings, before and after immersion for 7-30 d in Hank's solution at 37 °C, were characterized by x-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscope, x-ray photoelectron spectroscopy and Fourier infrared transmittance spectrum (FT-IR). A comparison between the corrosion protection of undoped MgO and MgO doped with 0.1 at % Ce coatings on the AZ31 alloy substrate is performed by electrochemical tests and immersion tests using open circuit potential and electrochemical impedance spectroscopy in Hank's solution, at 37 °C. The electrochemical results showed that the protection of the AZ31 alloy substrate against corrosion was better with the doped with 0.1 at % Ce MgO film deposited than with pure MgO coting. The investigations of the films after immersion in Hank's solution, at 37 °C, for 7, 21 and 30 d indicated that the grown layer on the film is bone like apatite that suggests a good bioactivity of 0.1 at % Ce-doped MgO coating. Our work demonstrates that the performance corrosion protection of the biodegradable magnesium alloys used for orthopedic applications, in simulated physiological environments (Hank and Ringer) can be enhanced through coating with Ce3+doped MgO sol-gel thin film.


Asunto(s)
Cerio , Magnesio , Magnesio/química , Óxido de Magnesio , Materiales Biocompatibles Revestidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Aleaciones/química , Corrosión
4.
ACS Appl Mater Interfaces ; 15(24): 29618-29635, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289140

RESUMEN

A promising approach for advanced bone implants is the deposition on titanium surfaces of organic thin films with improved therapeutic performances. Herein, we reported the efficient dip-coating deposition of caffeic acid (CA)-based films on both polished and chemically pre-treated Ti6Al4V alloys by exploiting hexamethylenediamine (HMDA) crosslinking ability. The formation of benzacridine systems, resulting from the interaction of CA with the amino groups of HMDA, as reported in previous studies, was suggested by the yellow/green color of the coatings. The coated surfaces were characterized by means of the Folin-Ciocalteu method, fluorescence microscopy, water contact angle measurements, X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, and Fourier transform infrared spectroscopy, confirming the presence of a uniform coating on the titanium surfaces. The optimal mechanical adhesion of the coating, especially on the chemically pre-treated substrate, was also demonstrated by the tape adhesion test. Interestingly, both films exhibited marked antioxidant properties (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays) that persisted over time and were not lost even after prolonged storage of the material. The feature of the coatings in terms of the exposed groups (XPS and zeta potential titration evidence) was apparently dependent on the surface pre-treatment of the titanium substrate. Cytocompatibility, scavenger antioxidant activity, and antibacterial properties of the developed coatings were evaluated. The most promising results were obtained in the case of the chemically pre-treated CA/HMDA-based coated surface that showed good cytocompatibility and high reactive oxygen species' scavenging ability, preventing their intracellular accumulation under pro-inflammatory conditions; moreover, an anti-fouling effect preventing the formation of 3D biofilm-like bacterial aggregates was observed by scanning electron microscopy. These results open new perspectives for the development of innovative titanium surfaces with thin coatings from naturally occurring phenols for bone contact implants.


Asunto(s)
Materiales Biocompatibles Revestidos , Titanio , Aleaciones/farmacología , Antioxidantes/farmacología , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Propiedades de Superficie , Titanio/farmacología , Titanio/química , Humanos
5.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770440

RESUMEN

The main unmet medical need of bone implants is multifunctional activity, including their ability to induce rapid and physiological osseointegration, counteract bacterial biofilm formation, and prevent in situ chronic inflammation at the same time. This research starts from an already developed c.p. titanium surface with proven bioactive (in vitro hydroxyl apatite precipitation) and antibacterial activities, due to a calcium titanate layer with nano- and micro-scale roughness and loaded with iodine ions. Here, antioxidant ability was added to prevent chronic inflammation by grafting polyphenols of a green tea extract onto the surface, without compromising the other functionalities of the surface. The surface was characterized before and after functionalization through XPS analysis, zeta potential titrations, ion release measurements, in vitro bioactivity tests, SEM and fluorescence microscopy, and Folin-Ciocalteu and biological tests. The presence of grafted polyphenols as a homogeneous layer was proven. The grafted polyphenols maintained their antioxidant ability and were anchored to the surface through the linking action of Ca2+ ions added to the functionalizing solution. Iodine ion release, cytocompatibility towards human mesenchymal stem cells (hMSC), and antibacterial activity were maintained even after functionalization. The antioxidant ability of the functionalized surface was effective in preserving hMSC viability in a chemically induced pro-inflammatory environment, thus showing a scavenger activity towards toxic active species responsible for inflammation.

6.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500956

RESUMEN

Implant-associated infections are a severe global concern, especially in the case of orthopedic implants intended for long-term or permanent use. The traditional treatment through systemic antibiotic administration is often inefficient due to biofilm formation, and concerns regarding the development of highly resistant bacteria. Therefore, there is an unfulfilled need for antibiotic-free alternatives that could simultaneously support bone regeneration and prevent bacterial infection. This study aimed to perform, optimize, and characterize the surface functionalization of Ti6Al4V-ELI discs by an FDA-approved antimicrobial peptide, nisin, known to hold a broad antibacterial spectrum. Accordingly, nisin bioactivity was also evaluated by in vitro release tests both in physiological and inflammatory pH conditions. Several methods, such as X-ray photoelectron spectroscopy (XPS), and Kelvin Probe atomic force microscopy confirmed the presence of a physisorbed nisin layer on the alloy surface. The functionalization performed at pH 6-7 was found to be especially effective due to the nisin configuration exposing its hydrophobic tail outwards, which is also responsible for its antimicrobial action. In addition, the first evidence of gradual nisin release both in physiological and inflammatory conditions was obtained: the static contact angle becomes half of the starting one after 7 days of soaking on the functionalized sample, while it becomes 0° on the control samples. Finally, the evaluation of the antibacterial performance toward the pathogen Staphylococcus aureus after 24 h of inoculation showed the ability of nisin adsorbed at pH 6 to prevent bacterial microfouling into biofilm-like aggregates in comparison with the uncoated specimens: viable bacterial colonies showed a reduction of about 40% with respect to the un-functionalized surface and the formation of (microcolonies (biofilm-like aggregates) is strongly affected.

7.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365654

RESUMEN

In this work, a new environmentally friendly material for the removal of heavy metal ions was developed to enhance the adsorption efficiency of photocurable chitosan-based hydrogels (CHg). The acknowledged affinity of tannic acid (TA) to metal ions was investigated to improve the properties of hydrogels obtained from natural and renewable sources (CHg-TA). The hydrogel preparation was performed via a simple two-step method consisting of the photocrosslinking of methacrylated chitosan and its subsequent swelling in the TA solution. The samples were characterized using ATR-FTIR, SEM, and Folin-Ciocalteu (F&C) assay. Moreover, the mechanical properties and the ζ potential of CHg and CHg-TA were tested. The copper ion was selected as a pollutant model. The adsorption capacity (Qe) of CHg and CHg-TA was assessed as a function of pH. Under acidic conditions, CHg-TA shows a higher Qe than CHg through the coordination of copper ions by TA. At an alkaline pH, the phenols convert into a quinone form, decreasing the Qe of CHg-TA, and the performance of CHg was found to be improved. A partial TA release can occur in the copper solution due to its high hydrophilicity and strong acidic pH conditions. Additionally, the reusability of hydrogels was assessed, and the high number of recycling cycles of CHg-TA was related to its high mechanical performance (compression tests). These findings suggest CHg-TA as a promising green candidate for heavy metal ion removal from acidic wastewater.

8.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079954

RESUMEN

The study aimed to identify an effective mechanism of adsorption of polyphenols on a nano-textured Ti surface and to evaluate the osteogenic differentiation on it. The source of polyphenols was a natural extract from red grape pomace. A chemical etching was used to form an oxide layer with a nanoscale texture on Ti; this layer is hydrophilic, but without hydroxyl groups with high acidic-basic chemical reactivity. The samples were characterized by electron and fluorescence microscopies, UV-Vis spectroscopy, contact angle measurements, zeta potential titration curves, and Folin-Ciocâlteu test. The presence of an adsorbed layer of polyphenols on the functionalized surface, maintaining redox ability, was confirmed by several tests. Consistent with the surface features, the adsorption was maximized by dissolving the extract in a high-amino acid medium, with respect to an inorganic solution, exploiting the high affinity of amino acids for polyphenols and for porous titanium surfaces. The osteogenic differentiation was assessed on an osteoblastic cell line by immunofluorescence, cell viability, expression of key osteoblast markers, and extracellular matrix mineralization. The surfaces functionalized with the extract diluted in the range 1 × 10-5-1 mg/mL resulted in having a greater osteogenic activity for the highest concentration, with lower values of cell viability; higher expression of alkaline phosphatase, bone sialoprotein, and collagen; and lower levels of osteopontin. In conclusion, the functionalization of a nano-textured Ti surface with polyphenols can potentially favor the osteogenic activity of osseointegrated implants.

9.
Langmuir ; 37(51): 14793-14804, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34905366

RESUMEN

Chitosan is known for its specific antibacterial mechanism and biodegradability, while polyphenols are known for their antioxidant and anti-inflammatory properties: coupling these properties on a surface for bone contact, such as hydroxyapatite, is of great interest. The system developed here allows the combination of hydroxyapatite, chitosan, and polyphenol properties in the same multifunctional biomaterial in order to modulate the host response after implantation. Crosslinked chitosan is used in this research to create a stable coating on hydroxyapatite, and then it is functionalized for a smart release of the polyphenols. The release is higher in inflammatory conditions and lower in physiological conditions. The properties of the coated and functionalized samples are characterized on the as-prepared samples and after the samples are immersed (for 24 h) in solutions, which simulate the inflammatory and physiological conditions. Characterization is performed in order to confirm the presence of polyphenols grafted within the chitosan coating, the stability of grafting as a function of pH, the morphology of the coating and distribution of polyphenols on the surface, and the redox reactivity and radical scavenging activity of the functionalized coating. All the results are in line with previous results, which show a successful coating with chitosan and functionalization with polyphenols. Moreover, the polyphenols have a different release kinetics that is faster in a simulated inflammatory environment compared to that in the physiological environment. Even after the release tests, a fraction of polyphenols are still bound on the surface, maintaining the antioxidant and radical scavenging activity for a longer time. An electrostatic bond occurs between the negative-charged polar groups of polyphenols (carboxyls and/or phenols) and the positive amide groups of the chitosan coating, and the substitution of the crosslinker by the polyphenols occurs during the functionalization process.


Asunto(s)
Quitosano , Vitis , Durapatita , Fenoles , Polifenoles
10.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34578515

RESUMEN

In the orthopedic and dental fields, simultaneously conferring titanium (Ti) and its alloy implants with antibacterial and bone-bonding capabilities is an outstanding challenge. In the present study, we developed a novel combined solution and heat treatment that controllably incorporates 0.7% to 10.5% of iodine into Ti and its alloys by ion exchange with calcium ions in a bioactive calcium titanate. The treated metals formed iodine-containing calcium-deficient calcium titanate with abundant Ti-OH groups on their surfaces. High-resolution XPS analysis revealed that the incorporated iodine ions were mainly positively charged. The surface treatment also induced a shift in the isoelectric point toward a higher pH, which indicated a prevalence of basic surface functionalities. The Ti loaded with 8.6% iodine slowly released 5.6 ppm of iodine over 90 days and exhibited strong antibacterial activity (reduction rate >99%) against methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, Escherichia coli, and S. epidermidis. A long-term stability test of the antibacterial activity on MRSA showed that the treated Ti maintained a >99% reduction until 3 months, and then it gradually decreased after 6 months (to a 97.3% reduction). There was no cytotoxicity in MC3T3-E1 or L929 cells, whereas apatite formed on the treated metal in a simulated body fluid within 3 days. It is expected that the iodine-carrying Ti and its alloys will be particularly useful for orthopedic and dental implants since they reliably bond to bone and prevent infection owing to their apatite formation, cytocompatibility, and sustainable antibacterial activity.

11.
ACS Biomater Sci Eng ; 7(9): 4483-4493, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34382772

RESUMEN

The traditional silicate bioactive glasses exhibit poor thermal processability, which inhibits fiber drawing or sintering into scaffolds. The composition of the silicate glasses has been modified to enable hot processing. However, the hot forming ability is generally at the expense of bioactivity. Metaphosphate glasses, on the other hand, possess excellent thermal processability, congruent dissolution, and a tailorable degradation rate. However, due to the layer-by-layer dissolution mechanism, cells do not attach to the material surface. Furthermore, the congruent dissolution leads to a low density of OH groups forming on the glass surface, limiting the adsorption of proteins. It is well regarded that the initial step of protein adsorption is critical as the cells interact with this protein layer, rather than the biomaterial itself. In this paper, we explore the possibility of improving protein adsorption on the surface of phosphate glasses through a variety of surface treatments, such as washing the glass surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions followed or not by a treatment with (3-aminopropyl)triethoxysilane (APTS). The impact of these surface treatments on the surface chemistry (contact angle, ζ-potential) and glass structure (FTIR) was assessed. In this manuscript, we demonstrate that understanding of the material surface chemistry enables to selectively improve the adsorption of albumin and fibronectin (used as model proteins). Furthermore, in this study, well-known silicate bioactive glasses (i.e., S53P4 and 13-93) were used as controls. While surface treatments clearly improved proteins adsorption on the surface of both silicate and phosphate glasses, it is of interest to note that protein adsorption on phosphate glasses was drastically improved to reach similar protein grafting ability to the silicate bioactive glasses. Overall, this study demonstrates that the limited cell/phosphate glass biological response can easily be overcome through deep understanding and control of the glass surface chemistry.


Asunto(s)
Implantes Absorbibles , Fosfatos , Adsorción , Vidrio , Silicatos
12.
Nanomaterials (Basel) ; 11(6)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199432

RESUMEN

Nano- and micro-structuring of implantable materials constitute a promising approach to introduce mechanical contact guidance effect, drive cells colonization, as well as to prevent bacteria adhesion and biofilm aggregation, through antifouling topography. Accordingly, this paper aims to extend the application of e-beam surface texturing and nano-structuring to the beta titanium alloys, which are of great interest for biomedical implants because of the low Young modulus and the reduction of the stress shielding effect. The paper shows that surface texturing on the micro-scale (micro-grooves) is functional to a contact guidance effect on gingival fibroblasts. Moreover, nano-structuring, derived from the e-beam surface treatment, is effective to prevent microfouling. In fact, human fibroblasts were cultivated directly onto grooved specimens showing to sense the surface micro-structure thus spreading following the grooves' orientation. Moreover, Staphylococcus aureus colonies adhesion was prevented by the nano-topographies in comparison to the mirror-polished control, thus demonstrating promising antifouling properties. Furthermore, the research goes into detail to understand the mechanism of microfouling prevention due to nano-topography and microstructure.

13.
ACS Biomater Sci Eng ; 7(6): 2309-2316, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33905647

RESUMEN

Bioactive glasses are the materials of choice in the field of bone regeneration. Antioxidant properties of interest to limit inflammation and foreign body reactions have been conferred to bioactive glasses by the addition of appropriate ions (such as Ce or Sr). On the other hand, the antioxidant activity of bioactive glasses without specific ion/molecular doping has been occasionally cited in the literature but never investigated in depth. In the present study, three silica-based bioactive glasses have been developed and characterized for their surface properties (wettability, zeta potential, chemical composition, and reactivity) and radical scavenging activity in the presence/absence of cells. For the first time, the antioxidant activity of simple silica-based (SiO2-CaO-Na2O) bioactive glasses has been demonstrated.


Asunto(s)
Vidrio , Dióxido de Silicio , Antioxidantes , Materiales Biocompatibles , Propiedades de Superficie
14.
ACS Biomater Sci Eng ; 7(1): 96-104, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33455203

RESUMEN

Bud extracts are a new category of vegetal products, which are used in gemmotherapy. These products are liquid preparation sources of bioactive molecules (phytochemicals) and are used in medicine as health-promoting agents. Rosa canina is a medicinal plant belonging to the family Rosaceae. The R. canina bud extracts, in particular, possess anti-inflammatory and antioxidant activities due to the presence of flavonoids and other phenolic compounds. The combination of R. canina bud extracts with biomaterials can be promising for obtaining multifunctional materials carrying both inorganic and biological properties. In this work, a protocol of functionalization has been properly designed, for the first time in the literature, in order to graft various bud extracts of R. canina to a silica-based bioactive glass (CEL2). The Folin-Ciocalteu method was used to determine the redox capacity of total polyphenols in the extracts and on functionalized solid samples. X-ray photoelectron spectroscopy analysis and fluorescence microscopy were employed to investigate the presence of phenol substances on the material surface. Bioactivity (in terms of ability of inducing hydroxyapatite precipitation) has been investigated by soaking the samples, with or without functionalization, in simulated body fluid. The presence of the polyphenols from bud extracts not only preserved glass bioactivity but even enhanced it. In particular, the solution obtained from the byproducts of primary extraction in glycerol macerate showed the best performances. Moreover, the presence and antioxidant activity of bud extract compounds on the material surface after grafting demonstrate the possibility of combining the glass inorganic bioactivity with the biomolecule-specific properties, making possible a local action at the implant site. The promising results reported in this work pave the way for the realization of new multifunctional materials with a green approach.


Asunto(s)
Rosa , Antioxidantes , Fitoquímicos , Extractos Vegetales/farmacología , Dióxido de Silicio
15.
Bioact Mater ; 6(5): 1479-1490, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33251384

RESUMEN

Stainless steel implants are suitable candidates for bone replacement due to their cytocompatibility and mechanical resistance, but they suffer from lack of bioactivity and are prone to bacterial infections. Accordingly, to overcome those limitations, in this study we developed by electrophoretic deposition (EPD), an innovative surface coating made of (i) zein, a natural fibroblast-friendly polymer, (ii) bioactive glass, a pro-osteogenic inorganic material and (iii) copper containing bioactive glass, an antibacterial and pro-angiogenic material. FESEM images confirmed that porous, uniform and free of cracks coatings were obtained by EPD; moreover, coatings were resistant to mechanical stress as demonstrated by the tape test, resulting in a 4B classification of adhesion to the substrate. The coatings were cytocompatible as indicated by metabolism evaluation of human fibroblasts, endothelial cells and mature or progenitor osteoblasts cultivated in direct contact with the specimens. They also maintained pro-osteogenic properties towards undifferentiated progenitor cells that expressed osteogenic genes after 15 days of direct cultivation. Copper conferred antibacterial properties as biofilm formation of the joint pathogens Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli was significantly reduced in comparison with copper-free coatings (p < 0.05). Moreover, this anti-infective activity resulted as targeted towards bacteria while the cells viability was preserved when cells and bacteria were cultivated in the same environment by a co-culture assay. Finally, copper ability to recruit blood vessels and to inhibit bacterial infection was confirmed in vivo where the growth of S. aureus biofilm was inhibited and the formation of new (<50 µm diameter spread) blood vessels was observed.

16.
Polymers (Basel) ; 12(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287236

RESUMEN

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.

17.
Mater Sci Eng C Mater Biol Appl ; 112: 110845, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409027

RESUMEN

In order to create a stable interface with the host tissue, porous implants are widely used to ensure the in-growth of the cells and the colonization of the implant. An ideal porous implant should have a 3D architecture that enables fast migration of incoming cells while not inducing a significant pro-inflammatory response by the immune cells. Moreover, in patients where the healing is impeded (patients with co-morbidities and metabolic diseases), porosity by itself is not enough for fast colonization, and the surface properties of the implant should also be controlled. In this study, we present a controlled oxidation-based surface treatment of microbead-based porous titanium implants which not only increases the colonization by connective tissue cells but also decreases the macrophage attachment. The treatment created a nanotextured surface on the implants with an acidic shift of isoelectric point (from 4.09 to 3.09) without endangering implant's mechanical integrity. The attachment and metabolic activity of activated macrophages were significantly lower on treated surfaces with an increase in the secretion of anti-inflammatory IL-1RA and a decrease in pro-fibrotic CCL-18. Human fibroblasts proliferated faster on the treated surfaces over 14 days with near complete colonization of the whole thickness of the implant with an accompanying an increase in the secretion of TGF-beta. The surface treated samples demonstrated partial filling of the entire pores. We demonstrated that the use of nanoscale surface treatments that can be applied to the whole internal surface of porous titanium implants can significantly alter both the immune response and the colonization of the implants and can be used to fine-tune and personalize implant interfaces according to patient needs.


Asunto(s)
Fibroblastos/metabolismo , Macrófagos/metabolismo , Titanio/química , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Línea Celular , Proliferación Celular/efectos de los fármacos , Quimiocina CCL18/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Porosidad , Prótesis e Implantes , Propiedades de Superficie , Titanio/farmacología , Regulación hacia Arriba/efectos de los fármacos
18.
Nanomaterials (Basel) ; 10(1)2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31936394

RESUMEN

Nowadays, there is a large amount of research aimed at improving the multifunctional behavior of the biomaterials for bone contact, including the concomitant ability to induce apatite formation (bioactivity), fast and effective osteoblasts colonization, and antibacterial activity. The aim of this study is to develop antibacterial and bioactive surfaces (Ti6Al4V alloy and a silica-based bioactive glass) by chemical doping with strontium and/or silver ions. The surfaces were characterized by Scanning Electron Microscopy equipped with Energy Dispersive X ray Spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and Transmission Electron Microscopy (TEM). To better focus on the cells-bacteria competition for the implant surface, in addition to the standard assays for the evaluation of the bacteria adhesion (ISO22196) and for single-cell cultures or biofilm formation, an innovative set of co-cultures of cells and bacteria is here proposed to simulate a competitive surface colonization. The results suggest that all the bioactive tested materials were cytocompatible toward the bone progenitor cells representative for the self-healing process, and that the doped ones were effective in reducing the surface colonization from a pathogenic drug-resistant strain of Staphylococcus aureus. The co-cultures experiments demonstrated that the doped surfaces were able to protect the adhered osteoblasts from the bacteria colonization as well as prevent the infection prior to the surface colonization by the osteoblasts.

19.
Materials (Basel) ; 13(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952307

RESUMEN

Soft tissue adhesion and infection prevention are currently challenging for dental transmucosal or percutaneous orthopedic implants. It has previously been shown that aligned micro-grooves obtained by Electron Beam (EB) can drive fibroblast alignment for improved soft tissue adhesion. In this work, evidence is presented that the same technique can also be effective for a reduction of the infection risk. Grooves 10-30 µm wide and around 0.2 µm deep were obtained on Ti6Al4V by EB. EB treatment changes the crystalline structure and microstructure in a surface layer that is thicker than the groove depth. Unexpectedly, a significant bacterial reduction was observed. The surfaces were characterized by field emission scanning electron microscopy, X-ray diffraction, confocal microscopy, contact profilometry, wettability and bacterial adhesion tests. The influence of surface topography, microstructure and crystallography on bacterial adhesion was systematically investigated: it was evidenced that the bacterial reduction after EB surface treatment is not correlated with the grooves, but with the microstructure induced by the EB treatment, with a significant bacterial reduction when the surface microstructure has a high density of grain boundaries. This correlation between microstructure and bacterial adhesion was reported for the first time for Ti alloys.

20.
Materials (Basel) ; 13(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31978976

RESUMEN

A coating that was made of peppermint essential oil was obtained on different metal substrates: Ti6Al4V alloy (mechanically polished and chemically etched) and 316L stainless steel (mechanically polished and mechanically ground). The final aim is to get a multifunctional (chemical and mechanical) protection of metal surfaces in contact with water media. The coatings were characterized by means of fluorescence microscopy, contact angle measurements, and Fourier Transformed Infrared spectroscopy (FTIR) spectroscopy. The chemical stability of the coatings was tested by means of soaking in water for different times (up to seven days) and washing with different alkaline or acidic solutions. The mechanical adhesion of the coating was tested by tape adhesion test (before and after soaking) and scratch tests to verify whether it has protection ability with respect to the metal substrate. All of the performed characterizations show that the coatings are chemically stable on all of the substrates and are nor dissolved or removed by water during soaking or by alkaline solutions during washing. The adhesion is high and classified as 4B or 5B (on the chemically etched or mechanically ground substrates) according to ASTM D3359-97, depending on the substrate roughness, both before and after soaking. In the case of scratch test (up to 10 N), the coating is not removed and it has a protection action that is able to avoid the surface damage, even if the substrate has a plastic deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...