Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Oral Investig ; 25(9): 5479-5492, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33641062

RESUMEN

OBJECTIVE: The aim of the investigation was to evaluate the maxillary alveolar bone morphology, bone architecture, and bone turnover in relation to the mechanical strain distribution in rats with dental premature contact. MATERIALS AND METHODS: Fifty 2-month-old male Wistar rats were used. The premature contact group (N=40) received a unilateral (right side) resin cementation on the occlusal surface of the upper first molar. The animals were distributed in 4 subgroups according to the periods of euthanasia: 7, 14, 21, and 28 days after cementation (N=10, for each period). For the control group (N=10), the teeth were kept without resin, featuring a normal occlusion. The pieces including the upper first molars, alveolar bone, and periodontal tissue were processed to histological and immunohistochemical evaluation of RANK-L and TRAP protein expression. A three-dimensional bone microarchitecture analysis was performed, where the heads of animals were scanned using microtomography and analyzed using CT-Analyser software (Bruker, Kontich, Belgium). In the computer simulation by finite element analysis, two micro-scaled three-dimensional finite element models of first molar and dentoalveolar tissues were constructed, in representation of control and premature contact groups, using Materialise MIMICS Academic Research v18 (Materialise, Leuven, Belgium). The analysis was set to simulate a maxillary molar biting during the power stroke phase. The total deformation, equivalent strain, and minimum principal strain distribution were calculated. RESULTS: The expression of RANK-L and TRAP presented higher positive ratio in the 7-day period compared to the control group. The three-dimensional morphometry showed decrease of bone volume in the premature contact, with significant values between the control and the 7-day and 14-day groups (P = 0.007). In FEA, the premature contact model presented a uniform compressive strain distribution in the alveolar bone crest compared to a non-uniform compressive strain distribution in the control model. CONCLUSIONS: The results from FEA, 3D bone microarchitecture, and histological and immunohistochemical analyses showed that a model with dental traumatic occlusion resulted in changes of alveolar bone mechanobiology and, consequently, its morphology. CLINICAL RELEVANCE: These results could be applied in dental treatment planning bringing biological and mechanical feedback to provide an effective mechanism to obtain physiological bone loss responses. Furthermore, this association between experimental and computational analyses will be important to figure out the alveolar bone response to mechanical stimulation in different clinical conditions.


Asunto(s)
Proceso Alveolar , Maxilar , Proceso Alveolar/diagnóstico por imagen , Animales , Simulación por Computador , Análisis de Elementos Finitos , Masculino , Maxilar/diagnóstico por imagen , Ratas , Ratas Wistar
2.
Front Physiol ; 11: 549, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581840

RESUMEN

The aim of this study was to analyze the relationship between alveolar bone deformation and ß-catenin expression levels in response to the mechanical load changed by dental extraction in adult rats. Twenty-four male rats (Rattus norvegicus albinus), Wistar linage, at 2 months of age, were used. The right upper incisor tooth was extracted, and euthanasia occurred in periods 5 (n = 6), 7 (n = 6), and 14 (n = 6) days after Day 0. In the control group (n = 6), the dentition was maintained. The euthanasia occurred within 14 days after day 0. After euthanasia, the rats of all groups had their left jaw with tooth removed and separated in the middle. The pieces were undergone routine histological processing and then the immunohistochemical marking were performed to label expression of the primary ß-catenin antibody, which was evaluated by qualitative and quantitative analysis. One head by each group (control and experimental) was submitted to computerized microtomography. After the three-dimensional reconstruction of the skull of the rat in each group, the computational simulation for finite elements analysis were performed to simulate a bite in the incisors. In finite element analysis, the strain patterns were evaluated after the application of bite force. The results were analyzed considering the areas in which changes in the amount of deformations were detected. The action of the bite force in the experimental condition, resulted in a uniform distribution of the amount of deformations, in addition to lower amount of deformation areas, differentiating from the control group. Comparing with the control group, the levels of ß-catenin signaled in the lingual bone of the middle third of the alveolar bone were raised in the periods of 5 and 14 days. The increased ß-catenin positive staining intensity was concentrated on osteocytes and gaps of osteocytes. The findings of the present study were in accordance with our hypothesis that the condition of dental extraction can cause the expression of ß-catenin and alter the regimes of bone deformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA