Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 19320, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369516

RESUMEN

Schistosomiasis, a parasitic disease caused by the blood fluke of the genus Schistosoma, affects over 230 million people, especially in developing countries. Despite the significant economic and public health consequences, only one drug is currently available for treatment of schistosomiasis, praziquantel. Thus, there is an urgent demand for new anthelmintic agents. Based on our continuous studies involving the chemical prospection of floristic biodiversity aiming to discover new bioactive compounds, this work reports the in vitro antiparasitic activity against Schistosoma mansoni adult worms of neolignans threo-austrobailignan-6 and verrucosin, both isolated from Saururus cernuus L. (Saururaceae). These neolignans showed a significant in vitro schistosomicidal activity, with EC50 values of 12.6-28.1 µM. Further analysis revealed a pronounced reduction in the number of S. mansoni eggs. Scanning electron microscopy analysis revealed morphological alterations when schistosomes were exposed to either threo-austrobailignan-6 or verrucosin. These relevant antischistosomal properties were accompanied by low cytotoxicity potential against the animal (Vero) and human (HaCaT) cell lines, resulting in a high selectivity index. Considering the promising chemical and biological properties of threo-austrobailignan-6 and verrucosin, this research should be of interest to those in the area of neglected diseases and in particular antischistosomal drug discovery.


Asunto(s)
Lignanos , Saururaceae , Esquistosomiasis mansoni , Esquistosomiasis , Animales , Humanos , Schistosoma mansoni , Saururaceae/química , Esquistosomiasis mansoni/tratamiento farmacológico
2.
Chem Biodivers ; 18(10): e2100515, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34424612

RESUMEN

The search for the pharmacophore of a bioactive compound, crucial for drug discovery studies, involves the adequate arrangement of different atoms in the molecule. As part of a continuous work aiming discovery of new drug candidates against the protozoan parasite Trypanosoma cruzi, the hexane extract of Hydrocotyle bonariensis was subjected to a bioactivity-guided fractionation to afford two chemically related dibenzylbutyrolactone lignans - hinokinin (1) and hibalactone (2). Compounds 1 and 2 showed activity against trypomastigote with EC50 values of 17.0 and 69.4 µM, respectively. Compound 1 was also active against the clinically relevant form of the parasite, amastigotes, displaying an EC50 value of 34.4 µM. The structure-activity relationship (SAR) indicated that the absence of the double bond at C-7 is a crucial feature for the increment of the antiparasitic activity. The lethal action of the most potent compound 1 was investigated in the trypomastigotes. The fluorescent-based assay with SYTOX Green demonstrated a significant alteration of the plasma membrane permeability of the parasite. Additionally, compound 1 demonstrated no significant hemolytic activity in mice erythrocytes at 200 µM. To search the pharmacophore, three different simplified compounds - 3,4-methylenedioxydihydrocinnamic acid (3), 3,4-methylenedioxydihydrocinnamic alcohol (4) and 3,4-methylenedioxycinnamic acid (5) - were prepared and tested against T. cruzi. These derivatives displayed EC50 values of 37.2 (3), 25.8 (4) and 73.5 (5) µM against trypomastigotes, and 41.3 (3) and 48.2 (4) µM against amastigotes, whereas compound 5 was inactive. Except for compound 2, which resulted in a CC50 value of 114.5 µM, all compounds showed no mammalian cytotoxicity at 200 µM. An in silico ADMET study was performed and predicted values demonstrated an acceptable drug-likeness profile for compounds 1-5. Despite the minor reduction in the potency, the simplified derivatives retained the antitrypanosomal activity against the intracellular amastigotes, even with 95 % reduction of their molecular weight. Additionally, in silico studies suggested them as more soluble compounds, making these simplified structures promising scaffolds for optimization studies in Chagas disease.


Asunto(s)
Apiaceae/química , Lignanos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Lignanos/química , Lignanos/aislamiento & purificación , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Tripanocidas/química , Tripanocidas/aislamiento & purificación
3.
J Pharm Pharmacol ; 71(12): 1871-1878, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31595517

RESUMEN

OBJECTIVE: This work describes the isolation of anti-Leishmania amazonensis metabolites from Saururus cernuus (Saururaceae). Additionally, ultrastructural changes in promastigotes were evidenced by electron microscopy. METHODS: The MeOH extract from the leaves of S. cernuus was subjected to bioactivity-guided fractionation. Anti-L. amazonensis activity of purified compounds was performed in vitro against promastigote and amastigote forms. KEY FINDINGS: Bioactivity-guided fractionation of the MeOH extract from the leaves of S. cernuus afforded two related tetrahydrofuran dineolignans: threo,threo-manassantin A (1) and threo,erythro-manassantin A (2). Compounds 1 and 2 displayed activity against promastigotes (EC50 of 35.4 ± 7.7 and 17.6 ± 4.2 µm, respectively) and amastigotes (EC50 of 20.4 ± 1.9 and 16.0 ± 1.1 µm, respectively), superior to that determined for the positive control miltefosine (EC50 of 28.7 ± 3.5 µm). Reduced cytotoxicity for host cells was observed for both compounds. Additionally, ultrastructural changes in promastigotes leading to an alteration of structural morphology were observed, as evidenced by electron microscopy. Furthermore, these compounds altered the morphology and physiology of the plasmatic membrane of L. amazonensis. CONCLUSIONS: The obtained results indicated that dineolignans 1 and 2 could be considered as a scaffold for the design of novel and selective drug candidates for the treatment of leishmaniasis.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Lignanos/farmacología , Saururaceae/química , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Furanos/química , Furanos/aislamiento & purificación , Furanos/farmacología , Leishmaniasis/parasitología , Lignanos/química , Lignanos/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Hojas de la Planta
4.
Fitoterapia ; 137: 104251, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31271783

RESUMEN

The MeOH extract from leaves of Saururus cernuus L. (Saururaceae) displayed in vitro activity against trypomastigote forms of T. cruzi (100% of parasite death at 200 µg/mL), suggesting the presence of bioactive compounds. Thus, the bioactivity-guided fractionation was carried out, leading to the isolation of three related neolignan derivatives, identified as threo-austrobailignan-5 (1), threo-austrobailignan-6 (2), and threo-dihydroguaiaretic acid (3). Anti-T. cruzi activity of compounds 1-3 was performed against cell-derived trypomastigotes and intracellular amastigotes. Additionally, the mammalian cytotoxicity was investigated using NCTC cells. Compound 2 was the most effective against extracellular trypomastigotes with IC50 of 3.7 µM, while compound 3 showed activity in both clinically relevant forms of the parasite, trypomastigotes and amastigotes, with IC50 values of 7.0 and 16.2 µM, respectively. However, the structurally related compound 1 was inactive. Based on these results, compounds 2 and 3 were selected to evaluate the mechanism of cellular death. Compound 2 induced alteration in the plasma membrane permeability and consequently in the ROS levels after 120 min of incubation. By using flow cytometry and fluorescence microscopy, compound 3 showed alterations in the mitochondrial membrane potential (ΔΨm) of trypomastigotes. Considering the promising chemical and biological properties of neolignans 2 and 3, these compounds could be used as starting points to develop new lead compounds for Chagas disease.


Asunto(s)
Lignanos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Saururaceae/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Brasil , Células Cultivadas , Guayacol/análogos & derivados , Lignanos/aislamiento & purificación , Macrófagos Peritoneales/parasitología , Ratones Endogámicos BALB C , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Hojas de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Tripanocidas/aislamiento & purificación
5.
Biosens Bioelectron ; 137: 287-293, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125818

RESUMEN

Hypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl) tellanyl) phenyl) amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.


Asunto(s)
Técnicas Biosensibles , ADN/química , Silicio/química , Telurio/química , Secuencia de Bases/genética , Nanoestructuras/química , Hibridación de Ácido Nucleico , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
6.
Biotechnol Adv ; 33(5): 614-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25560930

RESUMEN

The kinetic resolution of racemates and desymmetrization are the most common approaches to the preparation of enantiomerically enriched compounds. These procedures allow the access of high valuable, chiral building blocks for many purposes in academic or industrial R&D endeavors. Nevertheless, the scope of stereochemistry recognition in biotransformations usually occurs at the site of the transformation or when it is close to it (not more than 3 bonds). However, there are a growing number of enzymatic transformations which surpass the limits of stereorecognition of remote chiral (or prochiral) centers. In this account, we would like to present some aspects of biocatalyzed remote resolutions and remote desymmetrizations to call attention for these challenging transformations.


Asunto(s)
Biocatálisis , Bioquímica , Estereoisomerismo , Hidrolasas , Cinética
7.
J Nat Prod ; 77(6): 1377-82, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24905499

RESUMEN

Bioactivity-guided fractionation of the separate CH2Cl2 extracts from the aerial parts of Peperomia alata and P. trineura yielded seven polyketides: alatanone A [3-hydroxy-2-(5'-phenylpent-4'E-enoyl)cyclohex-2-en-1-one, 1a] and alatanone B [3-hydroxy-2-(3'-phenyl-6'-methylenedioxypropanoyl)cyclohex-2-en-1-one, 2a] from P. alata and trineurone A [3-hydroxy-2-(11'-phenylundec-10'E-enoyl)cyclohex-2-en-1-one, 1b], trineurone B [3-hydroxy-2-(15'-phenyl-18'-methylenedioxypentadecanoyl)cyclohex-2-en-1-one, 2b], trineurone C [3-hydroxy-2-(17'-phenyl-20'-methylenedioxyheptadecanoyl)cyclohex-2-en-1-one, 2c], trineurone D [3-hydroxy-2-(hexadec-10'Z-enoyl)cyclohex-2-en-1-one, 3a], and trineurone E [(6R)-(+)-3,6-dihydroxy-2-(hexadec-10'Z-enoyl)cyclohex-2-en-1-one, 3b] from P. trineura. The isolated compounds were evaluated for antifungal activity against Cladosporium cladosporioides and C. sphaeospermum and for cytotoxicity against the K562 and Nalm-6 leukemia cell lines.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Piperaceae/química , Policétidos/aislamiento & purificación , Policétidos/farmacología , Antifúngicos/química , Brasil , Cladosporium/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células K562 , Pruebas de Sensibilidad Microbiana , Resonancia Magnética Nuclear Biomolecular , Policétidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...