Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Exp Bot ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492237

RESUMEN

During the last decade, the knowledge about BBX proteins has abruptly increased. Genome-wide studies identified BBX gene family in several ornamental, industry and food crops; however, the reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during plant lifespan. By the inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later, it controls the balance between cell division and expansion to guarantee the correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), upregulates flavonoids biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology, not only because they affect multiple processes along plant development but also regulate other genes at the transcriptional and post-translational levels.

2.
Fitoterapia ; 173: 105820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211642

RESUMEN

In this study, we specifically focused on the crude methanolic leaf extract of Byrsonima coccolobifolia, investigating its antifungal potential against human pathogenic fungi and its antiviral activity against COVID-19. Through the use of high-performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry, direct infusion electrospray ionization ion trap tandem mass spectrometry, and chromatographic dereplication procedures, we identified galloyl quinic acid derivatives, catechin derivatives, proanthocyanidins, and flavonoid glycosides. The broth dilution assay revealed that the methanolic leaf extract of B. coccolobifolia exhibits antifungal activity against Cryptococcus neoformans (IC50 = 4 µg/mL). Additionally, docking studies were conducted to elucidate the interactions between the identified compounds and the central residues at the binding site of biological targets associated with COVID-19. Furthermore, the extract demonstrated an in vitro half-maximum effective concentration (EC50 = 7 µg/mL) and exhibited significant selectivity (>90%) toward SARS-CoV-2.


Asunto(s)
COVID-19 , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antifúngicos , Estructura Molecular , SARS-CoV-2 , Espectrometría de Masa por Ionización de Electrospray/métodos , Metanol , Antivirales/farmacología , Cromatografía Líquida de Alta Presión/métodos
3.
Appl Microbiol Biotechnol ; 107(19): 6103-6120, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37561179

RESUMEN

Bacillus subtilis species complex is known as lipopeptide-producer with biotechnological potential for pharmaceutical developments. This study aimed to identify lipopeptides from a bacterial isolate and evaluate their antifungal effects. Here, we isolated and identified a lipopeptide-producing bacterium as a species of Bacillus subtilis complex (strain UL-1). Twenty lipopeptides (six iturins, six fengycins, and eight surfactins) were identified in the crude extract (CE) and fractions (F1, F2, F3, and F4), and the highest content of total lipopeptides was observed in CE and F2. The chemical quantification data corroborate with the hemolytic and antifungal activities that CE and F2 were the most hemolytic and inhibited the fungal growth at lower concentrations against Fusarium spp. In addition, they caused morphological changes such as shortening and/or atypical branching of hyphae and induction of chlamydospore-like structure formation, especially in Fusarium solani. CE was the most effective in inhibiting the biofilm formation and in disrupting the mature biofilm of F. solani reducing the total biomass and the metabolic activity at concentrations ≥ 2 µg/mL. Moreover, CE significantly inhibited the adherence of F. solani conidia on contact lenses and nails as well as disrupted the pre-formed biofilms on nails. CE at 100 mg/kg was nontoxic on Galleria mellonella larvae, and it reduced the fungal burden in larvae previously infected by F. solani. Taken together, the lipopeptides obtained from strain UL-1 demonstrated a potent anti-Fusarium effect inducing morphological alterations and antibiofilm activities. Our data open further studies for the biotechnological application of these lipopeptides as potential antifungal agents. KEY POINTS: • Lipopeptides inhibit Fusarium growth and induce chlamydospore-like structures. • Lipopeptides hamper the adherence of conidia and biofilms of Fusarium solani. • Iturins, fengycins, and surfactins were associated with antifungal effects.


Asunto(s)
Antifúngicos , Bacillus subtilis , Bacillus subtilis/metabolismo , Antifúngicos/química , Esporas Fúngicas/metabolismo , Biopelículas , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Enfermedades de las Plantas/microbiología
4.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36290635

RESUMEN

Obesity is a global public health problem that is associated with oxidative stress. One of the strategies for the treatment of obesity is the use of drugs; however, these are expensive and have numerous side effects. Therefore, the search for new alternatives is necessary. Baccharis trimera is used in Brazilian folk medicine for the treatment of obesity. Here, B. trimera leaf extract (BT) showed antioxidant activity in seven in vitro tests, and it was not toxic to 3T3 murine fibroblasts or Caenorhabditis elegans. Furthermore, BT reduces the intracellular amount of reactive oxygen species and increases C. elegans survival. Moreover, these effects were not dependent on transcription factors. The inhibition of fat accumulation by BT in the C. elegans model was also investigated. BT reduced lipid accumulation in animals fed diets without or with high amount of glucose. Furthermore, it was observed using RNA interference (iRNA) that BT depends on the transcription factor NHR-49 to exert its effect. Phytochemical analysis of BT revealed rutin, hyperoside, and 5-caffeoylquinic acid as the main BT components. Thus, these data demonstrate that BT has antioxidant and anti-obesity effects. However, further studies should be conducted to understand the mechanisms involved in its action.

5.
J Ethnopharmacol ; 297: 115534, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35842178

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Byrsonima fagifolia Niedenzu (Malpighiaceae) and other Byrsonima species are popularly employed in Brazilian traditional medicine in the form of preparations as cicatrizing, anti-inflammatory, and antimicrobial. AIM OF THE STUDY: To characterize the phytochemical profile of the hydromethanolic extract obtained from B. fagifolia leaves (BF extract) and to evaluate the toxicity and the antifungal activity. MATERIALS AND METHODS: The compounds from BF extract were isolated by HPLC and the structures were elucidated based on extensive analyses of 1D and 2D NMR spectra (HMQC, HMBC and COSY) data. The antifungal effect was determined by the broth microdilution method and the toxicity was evaluated on erythrocytes from sheep's blood and Galleria mellonella larvae. RESULTS: Phytochemical investigation of the BF extract led to the isolation and characterization of pyrogallol, n-butyl gallate, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, and 1,3,4,5-tetra-O-galloylquinic acid. The BF extract showed high content of galloylquinic acid derivatives reaching more than twenty-times the quercetin derivatives content, according to the quantification by HPLC. These galloylquinic acid derivatives, obtained during this study, and quercetin derivatives, previously isolated, were submitted to the antifungal assays. The BF extract inhibited yeast growth mainly against Cryptococcus spp., at concentrations of 1-16 µg/mL, comparable to isolated compounds galloylquinic acid derivatives. However, the quercetin derivatives as well as quinic acid, gallic acid, and methyl gallate showed lower antifungal effect compared with galloylquinic derivatives. In addition, the BF extract had no hemolytic effect and no toxicity on G. mellonella. CONCLUSION: The phytochemical analysis revealed that galloylquinic acid derivatives are the major compounds in the leaves of B. fagifolia and they are associated to anti-cryptococcal activity and presented reduced toxicity.


Asunto(s)
Antifúngicos , Malpighiaceae , Animales , Antifúngicos/toxicidad , Malpighiaceae/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Hojas de la Planta , Quercetina , Ovinos
6.
Mar Drugs ; 17(7)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288445

RESUMEN

Ellagitannins constitute the largest group of hydrolyzable tannins of plants, and, from this group, casuarictin (Casu) was identified in some plant species. However, to our knowledge, no investigation of secretory phospholipase A2 (sPLA2) inhibition by Casu has been performed yet. Casuarictin was isolated by chromatography n-butanol (n-BuOH) partition of Laguncularia racemosa leaves. The pharmacological and biological effects of Casu were evaluated on isolated sPLA2 from the rattlesnake (Crotalus durissus terrificus) and using a plant bacterial strain. The compound was able to form a protein complex consisting of a stable sPLA2 + Casu complex. Analyses carried out with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) revealed that the molecular mass of sPLA2 increased from 14,425.62 to 15,362.74 Da. The enzymatic activity of the sPLA2 + Casu complex was significantly lower than that of native sPLA2. Besides, molecular interactions of Casu with sPLA2 were able to virtually abolish the native edematogenic effect as well as myonecrosis induced by the protein when injected 10 min after sPLA2. Therefore, Casu may be considered a potential anti-inflammatory that can be used to treat edema and myonecrosis induced by serine-secreting phospholipase A2. In addition, the compound also showed great antimicrobial potential.


Asunto(s)
Combretaceae/química , Taninos Hidrolizables/farmacología , Fosfolipasas A2 Secretoras/antagonistas & inhibidores , Hojas de la Planta/química , Venenos de Serpiente/metabolismo , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Compuestos de Bifenilo/farmacología , Crotalus/metabolismo , Edema/tratamiento farmacológico , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología
7.
Molecules ; 24(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781526

RESUMEN

Tibouchina pulchra (Cham.) Cogn. is a plant native to Brazil whose genus and family (Melastomataceae) are poorly studied with regards to its metabolite profile. Phenolic pigments of pink flowers were studied by ultra-performance liquid chromatography with a photodiode array detector and electrospray ionization quadrupole time-of-flight mass spectrometry. Therein, twenty-three flavonoids were identified with eight flavonols isolated by preparative high-performance liquid chromatography and analysed by one- and two-dimensional nuclear magnetic resonance. Kaempferol derivatives were the main flavonols, encompassing almost half of the detected compounds with different substitution patterns, such as glucoside, pentosides, galloyl-glucoside, p-coumaroyl-glucoside, and glucuronide. Concerning the anthocyanins, petunidin p-coumaroyl-hexoside acetylpentoside and malvidin p-coumaroyl-hexoside acetylpentoside were identified and agreed with previous reports on acylated anthocyanins from Melastomataceae. A new kaempferol glucoside was identified as kaempferol-(2''-O-methyl)-4'-O-α-d-glucopyranoside. Moreover, twelve compounds were described for the first time in the genus with five being new to the family, contributing to the chemical characterisation of these taxa.


Asunto(s)
Flavonoides/química , Flores/química , Glicósidos/química , Melastomataceae/química , Pigmentación , Árboles , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Mar Drugs, v. 17, n. 7, p. 403, jun. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2794

RESUMEN

Ellagitannins constitute the largest group of hydrolyzable tannins of plants, and, from this group, casuarictin (Casu) was identified in some plant species. However, to our knowledge, no investigation of secretory phospholipase A2 (sPLA2) inhibition by Casu has been performed yet. Casuarictin was isolated by chromatography n-butanol (n-BuOH) partition of Laguncularia racemosa leaves. The pharmacological and biological effects of Casu were evaluated on isolated sPLA2 from the rattlesnake (Crotalus durissus terrificus) and using a plant bacterial strain. The compound was able to form a protein complex consisting of a stable sPLA2 plus Casu complex. Analyses carried out with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) revealed that the molecular mass of sPLA2 increased from 14,425.62 to 15,362.74 Da. The enzymatic activity of the sPLA2 plus Casu complex was significantly lower than that of native sPLA2. Besides, molecular interactions of Casu with sPLA2 were able to virtually abolish the native edematogenic effect as well as myonecrosis induced by the protein when injected 10 min after sPLA2. Therefore, Casu may be considered a potential anti-inflammatory that can be used to treat edema and myonecrosis induced by serine-secreting phospholipase A2. In addition, the compound also showed great antimicrobial potential

9.
Mar Drugs ; 17(7): p. 403, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib16101

RESUMEN

Ellagitannins constitute the largest group of hydrolyzable tannins of plants, and, from this group, casuarictin (Casu) was identified in some plant species. However, to our knowledge, no investigation of secretory phospholipase A2 (sPLA2) inhibition by Casu has been performed yet. Casuarictin was isolated by chromatography n-butanol (n-BuOH) partition of Laguncularia racemosa leaves. The pharmacological and biological effects of Casu were evaluated on isolated sPLA2 from the rattlesnake (Crotalus durissus terrificus) and using a plant bacterial strain. The compound was able to form a protein complex consisting of a stable sPLA2 plus Casu complex. Analyses carried out with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF) revealed that the molecular mass of sPLA2 increased from 14,425.62 to 15,362.74 Da. The enzymatic activity of the sPLA2 plus Casu complex was significantly lower than that of native sPLA2. Besides, molecular interactions of Casu with sPLA2 were able to virtually abolish the native edematogenic effect as well as myonecrosis induced by the protein when injected 10 min after sPLA2. Therefore, Casu may be considered a potential anti-inflammatory that can be used to treat edema and myonecrosis induced by serine-secreting phospholipase A2. In addition, the compound also showed great antimicrobial potential

10.
AoB Plants ; 10(6): ply062, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30402215

RESUMEN

Flowers of Anacardiaceae and other Sapindales typically produce nectar, but scent, often associated with a reward for pollinators, has surprisingly been mentioned only rarely for members of the family and order. However, flowers of Anacardium humile and Mangifera indica produce a strong sweet scent. The origin and composition of these floral scents is the subject of this study. Screening of potential osmophores on the petals and investigations of their anatomy were carried out by light, scanning and transmission electron microscopy. The composition of the floral fragrance was characterized by gas chromatography-mass spectrometry. In both species, the base of the adaxial side of each petal revealed specialized secretory epidermal cells which are essentially similar in structure and distinct from all other neighbouring cells. These cells also showed evidence of granulocrine secretory mechanisms and slight specific variations in their subcellular apparatus coinciding with the respective composition of the floral fragrance, predominantly composed of sesquiterpenes in A. humile and monoterpenes in M. indica. This study reports the presence of osmophores for the first time in flowers of Anacardiaceae and confirms the link between the ultrastructural features of their secretory cells and the volatiles produced by the flowers. The flowers of most Sapindales, including Anacardiaceae, are nectariferous. However, the presence of osmophores has only been described for very few genera of Rutaceae and Sapindaceae. Both the occurrence of osmophores and fragrance may have largely been overlooked in Anacardiaceae and Sapindales until now. Further studies are needed to better understand the nature and diversity of the interactions of their nectariferous flowers with their pollinators.

11.
Mar Drugs ; 13(7): 4505-19, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26197325

RESUMEN

The aim of this work was to verify the effects of methanol (MeOH) and hydroalcoholic (HA) extracts and their respective partition phases obtained from white mangrove (Laguncularia racemosa (L.) C.F. Gaertn.) leaves on human thrombin activity. Among the extracts and phases tested, only the ethyl acetate and butanolic partitions significantly inhibited human thrombin activity and the coagulation of plasma in the presence of this enzyme. Chromatographic analyses of the thrombin samples incubated with these phases revealed that different compounds were able to interact with thrombin. The butanolic phase of the MeOH extract had the most potent inhibitory effects, reducing enzymatic activity and thrombin-induced plasma coagulation. Two glycosylated flavonoids in this partition were identified as the most potent inhibitors of human thrombin activity, namely quercetin-3-O-arabinoside (QAra) and quercetin-3-O-rhamnoside (Qn). Chromatographic analyses of thrombin samples incubated with these flavonoids demonstrated the chemical modification of this enzyme, suggesting that the MeOH extract contained other compounds that both induced structural changes in thrombin and diminished its activity. In this article, we show that despite the near absence of the medical use of mangrove compounds, this plant contains natural compounds with potential therapeutic applications.


Asunto(s)
Combretaceae/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Trombina/antagonistas & inhibidores , Coagulación Sanguínea/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Humanos , Extractos Vegetales/aislamiento & purificación
12.
Biomed Res Int ; 2014: 341270, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24696848

RESUMEN

This paper shows the results of quercitrin effects on the structure and biological activity of secretory phospholipase (sPLA2) from Crotalus durissus terrificus, which is the main toxin involved in the pharmacological effects of this snake venom. According to our mass spectrometry and circular dichroism results, quercetin was able to promote a chemical modification of some amino acid residues and modify the secondary structure of C. d. terrificus sPLA2. Moreover, molecular docking studies showed that quercitrin can establish chemical interactions with some of the crucial amino acid residues involved in the enzymatic activity of the sPLA2, indicating that this flavonoid could also physically impair substrate molecule access to the catalytic site of the toxin. Additionally, in vitro and in vivo assays showed that the quercitrin strongly diminished the catalytic activity of the protein, altered its Vmax and Km values, and presented a more potent inhibition of essential pharmacological activities in the C. d. terrificus sPLA2, such as its myotoxicity and edematogenic effect, in comparison to quercetin. Thus, we concluded that the rhamnose group found in quercitrin is most likely essential to the antivenom activities of this flavonoid against C. d. terrificus sPLA2.


Asunto(s)
Venenos de Crotálidos/toxicidad , Crotalus/metabolismo , Edema/patología , Células Musculares/patología , Fosfolipasas A2 Secretoras/toxicidad , Quercetina/análogos & derivados , Animales , Dicroismo Circular , Venenos de Crotálidos/química , Venenos de Crotálidos/aislamiento & purificación , Pruebas de Enzimas , Glicosilación/efectos de los fármacos , Masculino , Ratones , Simulación del Acoplamiento Molecular , Células Musculares/efectos de los fármacos , Fosfolipasas A2 Secretoras/química , Fosfolipasas A2 Secretoras/aislamiento & purificación , Quercetina/química , Quercetina/farmacología
13.
Parasitol Res ; 104(2): 311-4, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18810492

RESUMEN

The fractionation through bioguided antileishmanial activity of the dichloromethane extract of Cassia fistula fruits (Leguminosae) led to the isolation of the active isoflavone biochanin A, identified by spectroscopic methods. This compound showed 50% effective concentration (EC(50)) value of 18.96 microg/mL against promastigotes of Leishmania (L.) chagasi. The cytotoxicity of this substance against peritoneal macrophages resulted in an EC(50) value of 42.58 microg/mL. Additionally, biochanin A presented an anti-Trypanosoma-cruzi activity, resulting in an EC(50) value of 18.32 microg/mL and a 2.4-fold more effectiveness than benznidazole. These results contribute with novel antiprotozoal compounds for future drug design studies.


Asunto(s)
Antiparasitarios/farmacología , Cassia/química , Genisteína/farmacología , Leishmania/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antiparasitarios/aislamiento & purificación , Antiparasitarios/toxicidad , Frutas/química , Genisteína/aislamiento & purificación , Genisteína/toxicidad , Concentración 50 Inhibidora , Macrófagos Peritoneales/efectos de los fármacos , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Trypanosoma cruzi/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...