Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Chem ; 10: 1048313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465870

RESUMEN

This work describes the main advances carried out in the field of corrosion protection using layered double hydroxides (LDH), both as additive/pigment-based systems in organic coatings and as conversion films/pre-treatments. In the context of the research topic "Celebrating 20 years of CICECO", the main works reported herein are based on SECOP's group (CICECO) main advances over the years. More specifically, this review describes structure and properties of LDH, delving into the corrosion field with description of pioneering works, use of LDH as additives to organic coatings, conversion layers, application in reinforced concrete and corrosion detection, and environmental impact of these materials. Moreover, the use of computational tools for the design of LDH materials and understanding of ion-exchange reactions is also presented. The review ends with a critical analysis of the field and future perspectives on the use of LDH for corrosion protection. From the work carried out LDH seem very tenable, versatile, and advantageous for corrosion protection applications, although several obstacles will have to be overcome before their use become commonplace.

2.
J Environ Manage ; 272: 111080, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32854886

RESUMEN

Reclaiming water for cooling systems in oil refineries has been strongly encouraged over the past years for decreasing the large consumption of fresh water, thus contributing to the efficient use of this valuable resource. In a recent study [Journal of Environmental Management 261 (2020) 110229], some of the authors studied the retention of phenols in refinery wastewater through reverse osmosis (RO) and found rejections of up to 98% of phenols and 99% of both chemical oxygen demand (COD) and total organic carbon (TOC). The permeates complied with the quality standards for make-up water in cooling processes. A missing aspect, important for the water to be used in the oil and gas industry, was the level of corrosivity of the new permeates. In this work the corrosion of mild carbon steel in the permeates and in the original cooling tower make-up water was studied by electrochemical techniques. The corrosion rate of steel in the permeates in aerated conditions was lower (between 0.053 ± 0.006 and 0.123 ± 0.011 mm year-1) than in the make-up water (0.167 ± 0.030 mm year-1), confirming their suitability for replacing make-up water in the cooling towers. The low corrosion of carbon steel was attributed to the low conductivity and absence of oxidizing species in the fluids, compared to fresh water.


Asunto(s)
Carbono , Acero , Corrosión , Eliminación de Residuos Líquidos , Agua
3.
Phys Chem Chem Phys ; 22(31): 17574-17586, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32716424

RESUMEN

Kinetic parameters for three anion exchange reactions - Zn-LDH-NO3→ Zn-LDH-Cl, Zn-LDH-NO3→ Zn-LDH-SO4 and Zn-LDH-NO3→ Zn-LDH-VOx- were obtained by in situ synchrotron study. The first and the second ones are two-stage reactions; the first stage is characterized by the two-dimensional diffusion-controlled reaction following deceleratory nucleation and the second stage is a one-dimensional diffusion-controlled reaction also with a decelerator nucleation effect. In the case of exchange NO3-→ Cl- host anions are completely released, while in the case of NO3-→ SO42- the reaction ends without complete release of nitrate anions. The exchange of Zn-LDH-NO3→ Zn-LDH-VOx is a one-stage reaction and goes much slower than the previous two cases. The latter is characterized by a one stage two-dimensional reaction with an instantaneous nucleation. As a result, at the end of this process there are two crystalline phases with different polyvanadate species, presumably V4O124- and V2O74-, nitrate anions were not completely released. The rate of replacing NO3- anions by guest ones can be represented as Cl- > SO42- > VOxy-.

4.
Sci Rep ; 9(1): 10419, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320699

RESUMEN

Single-phase magnesium-aluminium layered double hydroxide (LDH) intercalated with dihydrogen phosphate was successfully produced by hydration of nanopowder of the respective mixed metal oxide (MMO) obtained using sol-gel based method followed by a two-step anion exchange hydroxide-to-chloride and chloride-to-phosphate. The MMO with the metal cation ratio of Mg/Al = 2:1 was prepared using the aqueous sol-gel method. Processes of the parent Mg2Al-OH LDH formation and the successive anion-exchanges, ОН- → Cl- and Cl- → H2PO4-, were considerably accelerated via the application of high-power (1.5 kW) ultrasound. The crystalline phases formed at all stages of the Mg2Al-H2PO4 LDH production were characterized using X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy, inductive coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Based on the data of chemical analysis and the XRD data, the type of the intercalated phosphate anion was determined and the arrangement of this anion in the interlayer was modelled.

5.
Chem Commun (Camb) ; 55(48): 6878-6881, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31134252

RESUMEN

An approach for the synthesis of ZnAl-NO3 LDH conversion coatings on zinc in an aqueous acidic Al(NO3)3/NaNO3 solution is demonstrated for the first time. The growth mechanism has been investigated using time resolved structural, microstructural and analytical methods. A LDH growth model involving both electrochemical and chemical processes is suggested.

6.
Materials (Basel) ; 12(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795532

RESUMEN

Carbon is used as a reinforcing phase in carbon-fiber reinforced polymer composites employed in aeronautical and other technological applications. Under polarization in aqueous media, which can occur on galvanic coupling of carbon-fiber reinforced polymers (CFRP) with metals in multi-material structures, degradation of the composite occurs. These degradative processes are intimately linked with the electrically conductive nature and surface chemistry of carbon. This review highlights the potential corrosion challenges in multi-material combinations containing carbon-fiber reinforced polymers, the surface chemistry of carbon, its plausible effects on the electrochemical activity of carbon, and consequently the degradation processes on carbon-fiber reinforced polymers. The implications of the emerging use of conductive nano-fillers (carbon nanotubes and carbon nanofibers) in the modification of CFRPs on galvanically stimulated degradation of CFRP is accentuated. The problem of galvanic coupling of CFRP with selected metals is set into perspective, and insights on potential methods for mitigation and monitoring the degradative processes in these composites are highlighted.

7.
Materials (Basel) ; 11(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513610

RESUMEN

In the frame of the current work, it was shown that plasma electrolytic oxidation (PEO) treatment can be applied on top of phosphoric sulfuric acid (PSA) anodized aluminum alloy AA2024. Being hard and well-adherent to the substrate, PEO layers improve both corrosion and wear resistance of the material. To facilitate PEO formation and achieve a dense layer, the systematic analysis of PEO layer formation on the preliminary PSA anodized layer was performed in this work. The microstructure, morphology, and composition of formed PEO coatings were investigated using scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical emission spectroscopy (GDOES). It was shown that under constant current treatment conditions, the PSA layer survived under the applied voltage of 350 V, whilst 400 V was an intermediate stage; and under 450 V, the PSA layer was fully converted after 5 min of the treatment. The comparison test with PEO formation on the bare material was performed. It was confirmed that during the "sparking" mode (400 V) of PEO formation, the PEO coatings, formed on PSA treated AA2024, were more wear resistant than the same PEO coatings on bare AA2024.

8.
J Toxicol Environ Health A ; 80(13-15): 672-687, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28696918

RESUMEN

Due to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0-150 µg/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 µg/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Oro/toxicidad , Nanotubos/toxicidad , Pez Cebra/embriología , Animales , Ensayo Cometa , Embrión no Mamífero/efectos de los fármacos , Microscopía Electrónica de Transmisión , Nanotubos/ultraestructura , Pez Cebra/crecimiento & desarrollo
9.
ACS Appl Mater Interfaces ; 9(28): 24282-24289, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28654237

RESUMEN

Energy-transfer reactions are the key for living open systems, biological chemical networking, and the development of life-inspired nanoscale machineries. It is a challenge to find simple reliable synthetic chemical networks providing a localization of the time-dependent flux of matter. In this paper, we look to photocatalytic reaction on TiO2 from different angles, focusing on proton generation and introducing a reliable, minimal-reagent-consuming, stable inorganic light-promoted proton pump. Localized illumination was applied to a TiO2 surface in solution for reversible spatially controlled "inorganic photoproton" isometric cycling, the lateral separation of water-splitting reactions. The proton flux is pumped during the irradiation of the surface of TiO2 and dynamically maintained at the irradiated surface area in the absence of any membrane or predetermined material structure. Moreover, we spatially predetermine a transient acidic pH value on the TiO2 surface in the irradiated area with the feedback-driven generation of a base as deactivator. Importantly we describe how to effectively monitor the spatial localization of the process by the in situ scanning ion-selective electrode technique (SIET) measurements for pH and the scanning vibrating electrode technique (SVET) for local photoelectrochemical studies without additional pH-sensitive dye markers. This work shows the great potential for time- and space-resolved water-splitting reactions for following the investigation of pH-stimulated processes in open systems with their flexible localization on a surface.

10.
J Colloid Interface Sci ; 468: 86-94, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26828278

RESUMEN

Zinc-aluminum layered double hydroxides with nitrate intercalated (Zn(n)Al-NO3, n=Zn/Al) is an intermediate material for the intercalation of different functional molecules used in a wide range of industrial applications. The synthesis of Zn(2)Al-NO3 was investigated considering the time and temperature of hydrothermal treatment. By examining the crystallite size in two different directions, hydrodynamic particle size, morphology, crystal structure and chemical species in solution, it was possible to understand the crystallization and dissolution processes involved in the mechanisms of crystallite and particle growth. In addition, hydrogeochemical modeling rendered insights on the speciation of different metal cations in solution. Therefore, this tool can be a promising solution to model and optimize the synthesis of layered double hydroxide-based materials for industrial applications.

11.
Acta Biomater ; 33: 64-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26821340

RESUMEN

Medical device-associated infections are a multi-billion dollar burden for the worldwide healthcare systems. The modification of medical devices with non-leaching coatings capable of killing microorganisms on contact is one of the strategies being investigated to prevent microorganism colonization. Here we developed a robust antimicrobial coating based on the chemical immobilization of the antimicrobial peptide (AMP), cecropin-melittin (CM), on gold nanoparticles coated surfaces. The concentration of AMP immobilized (110 µg/cm(2)) was higher than most of the studies reported so far (<10 µg/cm(2)). This translated onto a coating with high antimicrobial activity against Gram positive and negative bacteria sp., as well as multi-drug resistant bacteria. Studies with E. coli reporter bacteria showed that these coatings induced the permeability of the outer membrane of bacteria in less than 5 min and the inner membrane in approximately 20 min. Importantly, the antimicrobial properties of the coating are maintained in the presence of 20% (v/v) human serum, and have low probability to induce bacteria resistance. We further show that coatings have low toxicity against human endothelial and fibroblast cells and is hemocompatible since it does not induce platelet and complement activation. The antimicrobial coating described here may be promising to prevent medical device-associated infections. STATEMENT OF SIGNIFICANCE: In recent years, antimicrobial peptides (AMPs) have been chemically immobilized on surfaces of medical devices to render them with antimicrobial properties. Surfaces having immobilized cationic peptides are susceptible to be adsorbed by plasma proteins with the subsequent loss of antimicrobial activity. Furthermore, with the exception of very few studies that have determined the cytotoxicity of surfaces in mammalian cells, the effect of the immobilized AMP on human cells is relatively unknown. Here we report a coating based on cecropin-melittin peptide (CM) that maintains its antimicrobial activity against Gram-positive and negative bacteria including multi-drugs resistance bacteria in the presence of serum and has relatively low cytotoxicity against human cells. The reported coatings may be translated on to variety of substrates (glass and titanium) and medical devices to prevent device-associated microbial infection.


Asunto(s)
Antiinfecciosos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Péptidos/farmacología , Cecropinas/farmacología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Oro/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Proteínas Inmovilizadas/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía de Fotoelectrones , Suero/metabolismo , Propiedades de Superficie
12.
Phys Chem Chem Phys ; 16(45): 25152-60, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25331374

RESUMEN

The photochemical degradation of 2-mercaptobenzothiazole (MBT) and 1,2,3-benzotriazole (BTA) inhibitors was studied in the present work in aqueous and in organic solutions. The extent of photodegradation was assessed by UV-Vis spectroscopy and the main reaction products were identified by tandem electrospray ionization mass spectrometry (ESI-MS/MS). The analysis of degradation products upon UV irradiation revealed the predominant formation of dimeric compounds from MBT and oligomeric structures from BTA, which were further converted into aniline. The increase of the quantum yield of MBT and BTA photodegradation reactions under aerobic conditions both in aqueous and organic solvents was explained by an increase of the spin-orbit conversion of the singlet radical pairs into the triplet radical pairs in the presence of oxygen. These triplet pairs further dissociate into free radicals, or convert to the parent compounds. At the early stage of UV irradiation, free radical coupling leads essentially to dimer formation in the case of MBT and to the formation of oligomers in the case of BTA irradiation.

13.
Nanoscale ; 4(4): 1287-98, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22249939

RESUMEN

Novel self-healing protective coatings with nanocontainers of corrosion inhibitors open new opportunities for long-term anticorrosion protection of different metallic materials. In this paper a new type of functional nanoreservoir based on silica nanocapsules (SiNC) synthesized and loaded with corrosion inhibitor 2-mercaptobenzothiazole (MBT) in a one-stage process is reported for the first time. Unlike conventional mesoporous silica nanoparticles, SiNC possess an empty core and shell with gradual mesoporosity, arising from the particular conditions of the synthetic route adopted, which confers significant loading capacity and allows prolonged and stimuli-triggered release of the inhibiting species. The kinetics of inhibitor release was studied at different pH values and concentrations of NaCl. The results show a clear dependence of the release profiles on corrosion relevant triggers such as pH and Cl(-) concentration. When SiNC loaded with MBT are dispersed in NaCl solution, there is a significant decrease of the corrosion activity on aluminium alloy 2024. More importantly, when SiNC-MBT is added to a conventional water-based coating formulation, the modified coating hampers corrosion activity at the metal interface, better than in the case of direct addition of corrosion inhibitor. Furthermore, self-healing is observed before and after artificially inflicting defects in the modified coatings. As a result, the developed nanocontainers show high potential to be used in new generation of active protective coatings.

14.
J Phys Chem B ; 110(11): 5515-28, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539491

RESUMEN

The mechanism of corrosion protection of the widely used 2024-T3 aluminum alloy by cerium and lanthanum inhibitors in chloride media is described in detail in the present work. The corrosion process was investigated by means of scanning Kelvin probe force microscopy (SKPFM), in situ atomic force microscopy, and scanning electron microscopy coupled with energy dispersive spectroscopy. Employment of the high-resolution and in situ techniques results in a deep understanding of the details of the physical chemistry and mechanisms of the corrosion processes. The applicability of the SKPFM for mechanistic analysis of the effect of different corrosion inhibitors is demonstrated for the first time. The inhibitors under study show sufficient hindering of the localized corrosion processes especially in the case of pitting formation located around the intermetallic S-phase particles. The main role of Ce(3+) and La(3+) in the corrosion protection is formation of hydroxide deposits on S-phase inclusions buffering the local increase of pH, which is responsible for the acceleration of the intermetallics dealloying. The formed hydroxide precipitates can also act as a diffusion barrier hindering the corrosion processes in active zones. Cerium nitrate exhibits higher inhibition efficiency in comparison with lanthanum nitrate. The higher effect in the case of cerium is obtained due to lower solubility of the respective hydroxide. A detailed mechanism of the corrosion process and its inhibition is proposed based on thermodynamic analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...