Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6421, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494529

RESUMEN

The use of natural fibers in cementitious composites has been gaining prominence in engineering. The natural lignocellulosic fibers (NLFs) used in these composites have advantages such as reduced density, reduced fragmentation and concrete cracking, thus improving flexural performance and durability. Coconut-fiber is one of those natural fibers and its use presents technical, ecological, social and economic benefits, as it is improperly disposed of, representing a large waste of natural resources, in addition to causing environmental pollution.. Thus, composites reinforced with natural fibers are promising materials for the construction industry, as in addition to meeting the sustainability of buildings, there will also be a reduction in urban solid waste generated and gains for structures with the use of environmentally friendly materials that meet to active efforts and with greater durability. This work aims to evaluate the tensile behavior of green coconut-fibers subjected to different drying temperatures through chemical, thermal (TG/DSC), morphological, visual and mechanical analysis. Drying temperatures of 70 °C, 100 °C and 130 °C were analyzed and the results indicated that the drying temperature at 70 °C was satisfactory, providing fiber-reinforced composites with good tensile strength, combined with good ductility.

2.
Int J Biol Macromol ; 235: 123850, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36863677

RESUMEN

In this work, nanofibrillated cellulose (NFC) was extracted from cactus Cereus jamacaru DC. (mandacaru) for nanopaper production. The technique adopted includes alkaline treatment, bleaching, and grinding treatment. The NFC was characterized according to its properties and scored based on a quality index. Particle homogeneity, turbidity, and microstructure of the suspensions were evaluated. Correspondingly, the optical and physical-mechanical properties of the nanopapers were investigated. The chemical constituents of the material were analyzed. The sedimentation test and the zeta potential analyzed the stability of the NFC suspension. The morphological investigation was performed using environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis revealed that Mandacaru NFC has high crystallinity. Thermogravimetric analysis (TGA) and mechanical analysis were also used and revealed good thermal stability and good mechanical properties of the material. Therefore, the application of mandacaru is interesting in sectors such as packaging and electronic device development, as well as in composite materials. Given its score of 72 points on a quality index, this material was presented as an attractive, facile, and innovative source for obtaining NFC.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química
3.
Materials (Basel) ; 15(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36079532

RESUMEN

This paper investigates the bond behavior between a bio-aggregate and a cement-based matrix. The experimental evaluation comprised physical, chemical, image, and mechanical characterization of the bio-aggregate. The image analyses about the bio-aggregate's outer structure provided first insights to understand the particularities of this newly proposed bio-aggregate for use in cementitious materials. A mineral aggregate (granitic rock), largely used as coarse aggregate in the Brazilian civil construction industry, was used as reference. The bond behavior of both aggregates was evaluated via pull-out tests. The results indicated that both aggregates presented a similar linear elastic branch up to each respective peak loads. The peak load magnitude of the mineral aggregate indicated a better chemical adhesion when compared to the bio-aggregate's. The post-peak behavior, however, indicated a smoother softening branch for the bio-aggregate, corroborated by the microscopy image analyses. Although further investigation is required, the macaúba crushed endocarp was found to be a thriving bio-material to be used as bio-aggregate.

4.
Int J Biol Macromol ; 213: 780-790, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35690158

RESUMEN

This study aimed to evaluate the properties of cellulose nanofibers (CNFs) with different hemicellulose contents and cellulose II polymorphs. A link was found between these polysaccharides and the properties of CNFs. A decrease in crystallinity (from 69 to 63%) and changes in the crystalline structure of cellulose subjected to an alkaline environment were observed, promoting the partial conversion of cellulose I to cellulose II (from 2 to 42%) and preventing CNFs production at NaOH concentrations higher than 5%. Most treatments showed pseudoplastic fluid behavior, except for the 10% NaOH treatment over 2 h, which showed Newtonian fluid behavior. The quality index of the reference CNFs (TEMPO-oxidized) was the highest (80 ± 3), followed by that of the 5% NaOH-treated (68 ± 3 and 22% energy savings compared to the untreated sample), and the untreated (63 ± 3) samples; and the 10% NaOH treatments had quality indices of 51 ± 3 and 32 ± 1, respectively.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química , Polisacáridos , Hidróxido de Sodio
5.
Int J Biol Macromol ; 209(Pt A): 413-425, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413312

RESUMEN

Lignin-cellulose nanofibrils (LCNF) are of attracting an increasing interest due to the benefits of maintaining the lignin in the nanomaterial composition. The production of LCNF requires considerable energy consumption, which has been suppressed employing pretreatment of biomass, in which it highlights those that employ enzymes that have the advantage of being more environmentally friendly. Some negative aspects of the presence of lignin in the fiber to obtain cellulose nanofibrils is that it can hinder the delamination of the cell wall and act as a physical barrier to the action of cellulase enzymes. This study aimed to evaluate the impact of a combined enzymatic pretreatment of laccase and endoglucanase for high content lignin LCNF production. The morphological and chemical properties, visual aspect and stability, crystallinity, mechanical properties, rheology, barrier properties and quality index were used to characterize the LCNF. The laccase loading used was efficient in modifying the lignin to facilitate the action of the endoglucanase on cellulose without causing the removal of this macromolecule. This pretreatment improved the quality of LCNF (61 ± 3 to 71 ± 2 points) with an energy saving of 42% and, therefore, this pretreatment could be suitable for industrial production for a variety of applications.


Asunto(s)
Celulasa , Lignina , Biomasa , Celulasa/química , Celulosa/química , Hidrólisis , Lacasa , Lignina/química
6.
Environ Sci Pollut Res Int ; 29(6): 8665-8683, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34490567

RESUMEN

The growing demand for products with lower environmental impact and the extensive applicability of cellulose nanofibrils (CNFs) have received attention due to their attractive properties. In this study, bio-based films/nanopapers were produced with CNFs from banana tree pseudostem (BTPT) wastes and Eucalyptus kraft cellulose (EKC) and were evaluated by their properties, such as mechanical strength, biodegradability, and light transmittance. The CNFs were produced by mechanical fibrillation (after 20 and 40 passages) from suspensions of BTPT (alkaline pre-treated) and EKC. Films/nanopapers were produced by casting from both suspensions with concentrations of 2% (based in dry mass of CNF). The BTPT films/nanopapers showed greater mechanical properties, with Young's modulus and tensile strength around 2.42 GPa and 51 MPa (after 40 passages), respectively. On the other hand, the EKC samples showed lower disintegration in water after 24 h and biodegradability. The increase in the number of fibrillation cycles produced more transparent films/nanopapers and caused a significant reduction of water absorption for both raw materials. The permeability was similar for the films/nanopapers from BTPT and EKC. This study indicated that attractive mechanical properties and biodegradability, besides low cost, could be achieved by bio-based nanomaterials, with potential for being applied as emulsifying agents and special membranes, enabling more efficient utilization of agricultural wastes.


Asunto(s)
Nanoestructuras , Celulosa , Lignina , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...