Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(28): e202305564, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162307

RESUMEN

Indocyanine green (ICG) is the only near-infrared (NIR) dye approved for clinical use. Despite its versatility in photonic applications and potential for photothermal therapy, its photobleaching hinders its application. Here we discovered a nanostructure of dimeric ICG (Nano-dICG) generated by using ICG to stabilize nanoemulsions, after which ICG enabled complete dimerization on the nanoemulsion shell, followed by J-aggregation of ICG-dimer, resulting in a narrow, red-shifted (780 nm→894 nm) and intense (≈2-fold) absorbance. Compared to ICG, Nano-dICG demonstrated superior photothermal conversion (2-fold higher), significantly reduced photodegradation (-9.6 % vs. -46.3 %), and undiminished photothermal effect (7 vs. 2 cycles) under repeated irradiations, in addition to excellent colloidal and structural stabilities. Following intravenous injection, Nano-dICG enabled real-time tracking of its delivery to mouse tumors within 24 h by photoacoustic imaging at NIR wavelength (890 nm) distinct from the endogenous signal to guide effective photothermal therapy. The unprecedented finding of nanostructure-driven ICG dimerization leads to an ultra-stable phototheranostic platform.


Asunto(s)
Nanopartículas , Nanoestructuras , Ratones , Animales , Verde de Indocianina/química , Dimerización , Nanopartículas/química , Nanoestructuras/uso terapéutico , Nanoestructuras/química , Polímeros , Fototerapia/métodos , Línea Celular Tumoral
2.
ACS Biomater Sci Eng ; 9(5): 2220-2234, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014814

RESUMEN

Globalization has raised concerns about spreading diseases and emphasized the need for quick and efficient methods for drug screening. Established drug efficacy and toxicity approaches have proven obsolete, with a high failure rate in clinical trials. Organ-on-a-chip has emerged as an essential alternative to outdated techniques, precisely simulating important characteristics of organs and predicting drug pharmacokinetics more ethically and efficiently. Although promising, most organ-on-a-chip devices are still manufactured using principles and materials from the micromachining industry. The abusive use of plastic for traditional drug screening methods and device production should be considered when substituting technologies so that the compensation for the generation of plastic waste can be projected. This critical review outlines recent advances for organ-on-a-chip in the industry and estimates the possibility of scaling up its production. Moreover, it analyzes trends in organ-on-a-chip publications and provides suggestions for a more sustainable future for organ-on-a-chip research and production.


Asunto(s)
Dispositivos Laboratorio en un Chip , Humanos , Animales , Evaluación Preclínica de Medicamentos , Sector de Atención de Salud , Esterilización/métodos , Técnicas de Cultivo de Célula
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047078

RESUMEN

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Asunto(s)
COVID-19 , Animales , Humanos , Pez Cebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , ARN Mensajero , Proteínas de la Membrana , Proteínas Mitocondriales
4.
J Proteome Res ; 21(7): 1640-1653, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35674498

RESUMEN

The coronavirus disease 2019 (Covid-19), which caused respiratory problems in many patients worldwide, led to more than 5 million deaths by the end of 2021. Experienced symptoms vary from mild to severe illness. Understanding the infection severity to reach a better prognosis could be useful to the clinics, and one study area to fulfill one piece of this biological puzzle is metabolomics. The metabolite profile and/or levels being monitored can help predict phenotype properties. Therefore, this study evaluated plasma metabolomes of 110 individual samples, 57 from control patients and 53 from recent positive cases of Covid-19 (IgM 98% reagent), representing mild to severe symptoms, before any clinical intervention. Polar metabolites from plasma samples were analyzed by quantitative 1H NMR. Glycerol, 3-aminoisobutyrate, formate, and glucuronate levels showed alterations in Covid-19 patients compared to those in the control group (Tukey's HSD p-value cutoff = 0.05), affecting the lactate, phenylalanine, tyrosine, and tryptophan biosynthesis and d-glutamine, d-glutamate, and glycerolipid metabolisms. These metabolic alterations show that SARS-CoV-2 infection led to disturbance in the energetic system, supporting the viral replication and corroborating with the severe clinical conditions of patients. Six polar metabolites (glycerol, acetate, 3-aminoisobutyrate, formate, glucuronate, and lactate) were revealed by PLS-DA and predicted by ROC curves and ANOVA to be potential prognostic metabolite panels for Covid-19 and considered clinically relevant for predicting infection severity due to their straight roles in the lipid and energy metabolism. Thus, metabolomics from samples of Covid-19 patients is a powerful tool for a better understanding of the disease mechanism of action and metabolic consequences of the infection in the human body and may corroborate allowing clinicians to intervene quickly according to the needs of Covid-19 patients.


Asunto(s)
COVID-19 , Aminoácidos , COVID-19/diagnóstico , Formiatos , Glucuronatos , Glicerol , Humanos , Lactatos , Metabolómica , SARS-CoV-2
5.
Sci Signal ; 14(686)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103421

RESUMEN

Cancer cells have differential metabolic dependencies compared to their nonmalignant counterparts. However, few metabolism-targeting compounds have been successful in clinical trials. Here, we investigated the metabolic vulnerabilities of triple-negative breast cancer (TNBC), particularly those metabolic perturbations that increased mitochondrial apoptotic priming and sensitivity to BH3 mimetics (drugs that antagonize antiapoptotic proteins). We used high-throughput dynamic BH3 profiling (HT-DBP) to screen a library of metabolism-perturbing small molecules, which revealed inhibitors of the enzyme nicotinamide phosphoribosyltransferase (NAMPT) as top candidates. In some TNBC cells but not in nonmalignant cells, NAMPT inhibitors increased overall apoptotic priming and induced dependencies on specific antiapoptotic BCL-2 family members. Treatment of TNBC cells with NAMPT inhibitors sensitized them to subsequent treatment with BH3 mimetics. The combination of a NAMPT inhibitor (FK866) and an MCL-1 antagonist (S63845) reduced tumor growth in a TNBC patient-derived xenograft model in vivo. We found that NAMPT inhibition reduced NAD+ concentrations below a critical threshold that resulted in depletion of adenine, which was the metabolic trigger that primed TNBC cells for apoptosis. These findings demonstrate a close interaction between metabolic and mitochondrial apoptotic signaling pathways and reveal that exploitation of a tumor-specific metabolic vulnerability can sensitize some TNBC to BH3 mimetics.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Apoptosis , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Humanos , Mitocondrias , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2 , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
6.
Anal Chem ; 88(17): 8421-7, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27494768

RESUMEN

Current methods employed for the analysis of the chemical composition of solid matrices (such as plant, animal, or human tissues; soil; etc.) often require many sample treatment steps, including an extraction step with exclusively dedicated solvents. This work describes an optimized analytical setup in which the extraction of a solid sample is directly coupled to its analysis by high-performance liquid chromatography. This approach avoids (i) the use of pumps and valves other than those comprising the HPLC instrument, (ii) the use of solvents other than those of the mobile phase, and (iii) the need to stop the mobile phase flow at any time during the full analytical procedure. The compatibility of this approach with the direct analysis of fresh tissues (leaves, stems, and seeds of four plant species with dissimilar chemical compositions) was successfully demonstrated, leading to the elimination of sample preparation steps such as drying, grinding, concentration, dilution, and filtration, among others. This work describes a new, simple, and efficient green approach to minimize or eliminate sample treatment procedures. It could be easily applied for quality control of plant materials and their derived products through chromatographic fingerprints and for untargeted metabolomic investigations of solid matrices, among other applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...