Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Radiat Oncol ; 9(6): 101483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706833

RESUMEN

Purpose: Segmentation of clinical target volumes (CTV) on medical images can be time-consuming and is prone to interobserver variation (IOV). This is a problem for online adaptive radiation therapy, where CTV segmentation must be performed every treatment fraction, leading to longer treatment times and logistic challenges. Deep learning (DL)-based auto-contouring has the potential to speed up CTV contouring, but its current clinical use is limited. One reason for this is that it can be time-consuming to verify the accuracy of CTV contours produced using auto-contouring, and there is a risk of bias being introduced. To be accepted by clinicians, auto-contouring must be trustworthy. Therefore, there is a need for a comprehensive commissioning framework when introducing DL-based auto-contouring in clinical practice. We present such a framework and apply it to an in-house developed DL model for auto-contouring of the CTV in rectal cancer patients treated with MRI-guided online adaptive radiation therapy. Methods and Materials: The framework for evaluating DL-based auto-contouring consisted of 3 steps: (1) Quantitative evaluation of the model's performance and comparison with IOV; (2) Expert observations and corrections; and (3) Evaluation of the impact on expected volumetric target coverage. These steps were performed on independent data sets. The framework was applied to an in-house trained nnU-Net model, using the data of 44 rectal cancer patients treated at our institution. Results: The framework established that the model's performance after expert corrections was comparable to IOV, and although the model introduced a bias, this had no relevant impact on clinical practice. Additionally, we found a substantial time gain without reducing quality as determined by volumetric target coverage. Conclusions: Our framework provides a comprehensive evaluation of the performance and clinical usability of target auto-contouring models. Based on the results, we conclude that the model is eligible for clinical use.

3.
Phys Imaging Radiat Oncol ; 28: 100500, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869474

RESUMEN

Background and purpose: Existing methods for quality assurance of the radiotherapy auto-segmentations focus on the correlation between the average model entropy and the Dice Similarity Coefficient (DSC) only. We identified a metric directly derived from the output of the network and correlated it with clinically relevant metrics for contour accuracy. Materials and Methods: Magnetic Resonance Imaging auto-segmentations were available for the gross tumor volume for cervical cancer brachytherapy (106 segmentations) and for the clinical target volume for rectal cancer external-beam radiotherapy (77 segmentations). The nnU-Net's output before binarization was taken as a score map. We defined a metric as the mean of the voxels in the score map above a threshold (λ). Comparisons were made with the mean and standard deviation over the score map and with the mean over the entropy map. The DSC, the 95th Hausdorff distance, the mean surface distance (MSD) and the surface DSC were computed for segmentation quality. Correlations between the studied metrics and model quality were assessed with the Pearson correlation coefficient (r). The area under the curve (AUC) was determined for detecting segmentations that require reviewing. Results: For both tasks, our metric (λ = 0.30) correlated more strongly with the segmentation quality than the mean over the entropy map (for surface DSC, r > 0.65 vs. r < 0.60). The AUC was above 0.84 for detecting MSD values above 2 mm. Conclusions: Our metric correlated strongly with clinically relevant segmentation metrics and detected segmentations that required reviewing, indicating its potential for automatic quality assurance of radiotherapy target auto-segmentations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...