Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38676214

RESUMEN

Passive acoustic monitoring (PAM) through acoustic recorder units (ARUs) shows promise in detecting early landscape changes linked to functional and structural patterns, including species richness, acoustic diversity, community interactions, and human-induced threats. However, current approaches primarily rely on supervised methods, which require prior knowledge of collected datasets. This reliance poses challenges due to the large volumes of ARU data. In this work, we propose a non-supervised framework using autoencoders to extract soundscape features. We applied this framework to a dataset from Colombian landscapes captured by 31 audiomoth recorders. Our method generates clusters based on autoencoder features and represents cluster information with prototype spectrograms using centroid features and the decoder part of the neural network. Our analysis provides valuable insights into the distribution and temporal patterns of various sound compositions within the study area. By utilizing autoencoders, we identify significant soundscape patterns characterized by recurring and intense sound types across multiple frequency ranges. This comprehensive understanding of the study area's soundscape allows us to pinpoint crucial sound sources and gain deeper insights into its acoustic environment. Our results encourage further exploration of unsupervised algorithms in soundscape analysis as a promising alternative path for understanding and monitoring environmental changes.

2.
IEEE Trans Vis Comput Graph ; 21(1): 81-94, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26357023

RESUMEN

Similarity-based layouts generated by multidimensional projections or other dimension reduction techniques are commonly used to visualize high-dimensional data. Many projection techniques have been recently proposed addressing different objectives and application domains. Nonetheless, very little is known about the effectiveness of the generated layouts from a user's perspective, how distinct layouts from the same data compare regarding the typical visualization tasks they support, or how domain-specific issues affect the outcome of the techniques. Learning more about projection usage is an important step towards both consolidating their role in high-dimensional data analysis and taking informed decisions when choosing techniques. This work provides a contribution towards this goal. We describe the results of an investigation on the performance of layouts generated by projection techniques as perceived by their users. We conducted a controlled user study to test against the following hypotheses: (1) projection performance is task-dependent; (2) certain projections perform better on certain types of tasks; (3) projection performance depends on the nature of the data; and (4) subjects prefer projections with good segregation capability. We generated layouts of high-dimensional data with five techniques representative of different projection approaches. As application domains we investigated image and document data. We identified eight typical tasks, three of them related to segregation capability of the projection, three related to projection precision, and two related to incurred visual cluttering. Answers to questions were compared for correctness against `ground truth' computed directly from the data. We also looked at subject confidence and task completion times. Statistical analysis of the collected data resulted in Hypotheses 1 and 3 being confirmed, Hypothesis 2 being confirmed partially and Hypotheses 4 could not be confirmed. We discuss our findings in comparison with some numerical measures of projection layout quality. Our results offer interesting insight on the use of projection layouts in data visualization tasks and provide a departing point for further systematic investigations.

3.
J Integr Neurosci ; 3(1): 47-60, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15139078

RESUMEN

This article describes preliminary results of a investigation that addresses the problem of human color perception in the visual analysis of complex three-dimensional shapes. We built 3D visualization models of synthetic neural cells, and designed two experiments to identify user preferences for color when observing and executing tasks on these 3D models. Though preliminary, the results obtained from these experiments are consistent and indicate that some trends exist that deserve further investigation.


Asunto(s)
Percepción de Color/fisiología , Percepción de Forma/fisiología , Modelos Neurológicos , Neuronas/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA