Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2301397, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295064

RESUMEN

Infrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd-H pressure-composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.

2.
J Phys Chem C Nanomater Interfaces ; 127(33): 16636-16644, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37646009

RESUMEN

Even though confinement was identified as a common element of selective catalysis and simulations predicted enhanced properties of adsorbates within microporous materials, experimental results on the characterization of the adsorbed phase are still rare. In this study, we provide experimental evidence of the increase of propene density in the channels of Zn-MOF-74 by 16(2)% compared to the liquid phase. The ordered propene molecules adsorbed within the pores of the MOF have been localized by in situ neutron powder diffraction, and the results are supported by adsorption studies. The formation of a second adsorbate layer, paired with nanoconfinement-induced short intermolecular distances, causes the efficient packing of the propene molecules and results in an increase of olefin density.

3.
Talanta ; 264: 124734, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271007

RESUMEN

Infrared spectroscopy is widely used to analyse the surface of solid materials central to modern chemical processes. For liquid phase experiments, the attenuated total reflection mode (ATR-IR) requires the use of waveguides that can limit a broader applicability of the technique for catalysis studies. Here, we demonstrate that high quality spectra of the solid-liquid interface can be collected in diffuse reflectance mode (DRIFTS) thus opening future applications of infrared spectroscopy.

4.
Phys Chem Chem Phys ; 25(12): 8392-8402, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36892423

RESUMEN

The reaction mechanism of dimethyl carbonate (DMC) production over ZrO2 from CO2 and CH3OH is well-known, but the level of understanding has not improved in the last decade. Most commonly, the reaction mechanism has been explored in the gas phase, whilst DMC production occurs in the liquid phase. To overcome this contradiction, we exploited in situ ATR-IR spectroscopy to study DMC formation over ZrO2 in the liquid phase. A multiple curve resolution-alternate least square (MCR-ALS) approach was applied to spectra collected during the CO2/CH3OH interaction with the catalyst surface, leading to the identification of five pure components with their respective concentration profiles. CO2 and CH3OH activation to carbonates and methoxide species was found to strongly depend on the reaction temperature. Low temperature prevents methanol dissociation leaving a catalyst covered with stable carbonates, whilst higher temperature decreases the stability of the carbonates and enhances the formation of methoxides. A reaction path involving the methoxide/carbonate interaction at the surface was observed at low temperature (≤50 °C). We propose that a different reaction path, independent of carbonate formation and involving the direct CO2/methoxide interplay, occurs at 70 °C.

5.
Phys Chem Chem Phys ; 24(36): 21916-21926, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069029

RESUMEN

In situ X-ray absorption spectroscopy (XAS) is a powerful technique for the investigation of heterogeneous catalysts and electrocatalysts. The obtained XAS spectra are usually interpreted from the point of view of the investigated chemical processes, thereby sometimes omitting the fact that intense X-ray irradiation may induce additional transformations in metal speciation and, thus, in the corresponding XAS spectra. In this work, we report on X-ray induced photochemical reduction of vanadium in supported vanadia (VOx) catalysts under reaction conditions, detected at a synchrotron beamline. While this process was not observed in an inert atmosphere and in the presence of water vapor, it occurred at room temperature in the presence of a reducing agent (ethanol or hydrogen) alone or mixed with oxygen. Temperature programmed experiments have shown that X-ray induced reduction of VOx species appeared very clear at 30-100 °C but was not detected at higher temperatures, where the thermocatalytic ethanol oxidative hydrogenation (ODH) takes place. Similar to other studies on X-ray induced effects, we suggest approaches, which can help to mitigate vanadium photoreduction, including defocusing of the X-ray beam and attenuation of the X-ray beam intensity by filters. To recognize beam damage under in situ/operando conditions, we suggest performing X-ray beam switching (on and off) tests at different beam intensities under in situ conditions.

6.
Chem Commun (Camb) ; 58(46): 6610-6613, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583379

RESUMEN

The effect of water on the NH3-assisted selective catalytic reduction of NOx (NH3-SCR) has been largely neglected, despite the inevitable presence of water vapor in real emissions produced by fuel combustion. In this work, we investigated the role of water in the behavior of active Cu2+ ions in Cu-SSZ-13 in the NH3-SCR reaction. The addition of water to the reactant feed leads to significantly increased NOx reduction over the catalyst. By combining in situ DRIFTS and XANES analyses during the NH3-SCR reaction, we found that the redox cycle of Cu ions is promoted by the presence of water.

7.
Phys Chem Chem Phys ; 24(7): 4555-4561, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35129188

RESUMEN

Lewis acid sites (LAS) and Brønsted-Lowry acid sites (BAS) play key roles in many catalytic processes, particularly in the selective catalytic reduction (SCR) of nitrogen oxides with ammonia. Here we show that temperature, gas feed, and catalyst composition affect the interplay between LAS and BAS on vanadia-based materials under SCR-relevant conditions. While different LAS typically manifest as a single collective peak in the steady-state spectra, their individual signals could be isolated through the increased sensitivity of transient experimentation. Furthermore, water could increase BAS not just by converting pre-existing LAS, but also by generating spontaneously new acid sites. These results pave the way for understanding the relationship between LAS and BAS, and how their ratio determines the reactivity of vanadia-based catalysts not just in SCR but in other chemical transformations as well.

8.
Nat Commun ; 13(1): 324, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031615

RESUMEN

Transforming carbon dioxide into valuable chemicals and fuels, is a promising tool for environmental and industrial purposes. Here, we present catalysts comprising of cobalt (oxide) nanoparticles stabilized on various support oxides for hydrocarbon production from carbon dioxide. We demonstrate that the activity and selectivity can be tuned by selection of the support oxide and cobalt oxidation state. Modulated excitation (ME) diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that cobalt oxide catalysts follows the hydrogen-assisted pathway, whereas metallic cobalt catalysts mainly follows the direct dissociation pathway. Contrary to the commonly considered metallic active phase of cobalt-based catalysts, cobalt oxide on titania support is the most active catalyst in this study and produces 11% C2+ hydrocarbons. The C2+ selectivity increases to 39% (yielding 104 mmol h-1 gcat-1 C2+ hydrocarbons) upon co-feeding CO and CO2 at a ratio of 1:2 at 250 °C and 20 bar, thus outperforming the majority of typical cobalt-based catalysts.

9.
Nat Commun ; 12(1): 7096, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876582

RESUMEN

Some fundamental concepts of catalysis are not fully explained but are of paramount importance for the development of improved catalysts. An example is the concept of structure insensitive reactions, where surface-normalized activity does not change with catalyst metal particle size. Here we explore this concept and its relation to surface reconstruction on a set of silica-supported Ni metal nanoparticles (mean particle sizes 1-6 nm) by spectroscopically discerning a structure sensitive (CO2 hydrogenation) from a structure insensitive (ethene hydrogenation) reaction. Using state-of-the-art techniques, inter alia in-situ STEM, and quick-X-ray absorption spectroscopy with sub-second time resolution, we have observed particle-size-dependent effects like restructuring which increases with increasing particle size, and faster restructuring for larger particle sizes during ethene hydrogenation while for CO2 no such restructuring effects were observed. Furthermore, a degree of restructuring is irreversible, and we also show that the rate of carbon diffusion on, and into nanoparticles increases with particle size. We finally show that these particle size-dependent effects induced by ethene hydrogenation, can make a structure sensitive reaction (CO2 hydrogenation), structure insensitive. We thus postulate that structure insensitive reactions are actually apparently structure insensitive, which changes our fundamental understanding of the empirical observation of structure insensitivity.

10.
ACS Appl Mater Interfaces ; 12(45): 50550-50565, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33111522

RESUMEN

Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.

11.
Phys Chem Chem Phys ; 22(34): 18798-18805, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32440668

RESUMEN

Substitution of critical raw materials such as platinum group metals in automotive catalysts is challenging. In this work we prepared a nanocomposite in which CuO nanoparticles are highly dispersed on a La0.5Sr0.5CoO3 perovskite-type oxide. The behaviour and reactivity under three way catalyst conditions was monitored by operando time-resolved high-energy X-ray diffraction under oscillating rich/lean feed. The reducing environment converted CuO into Cu(0) in a two step process: Cu(ii) to Cu(i) and to Cu(0), while the perovskite evolved to an oxygen deficient brownmillerite phase. These structural transformations are shown to be crucial for catalytic activity. The in situ generated Cu(0)/Cu(i)/brownmillerite nanocomposite is active for NO reduction above 300 °C, reaching 90% NO conversion at 450 °C. The effect of feed composition on the diffraction patterns was studied by Rietveld refinement in order to rationalize the experimental observations under TWC conditions.

12.
J Synchrotron Radiat ; 27(Pt 3): 681-688, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381768

RESUMEN

Time-resolved X-ray absorption spectroscopy (XAS) offers the possibility to monitor the state of materials during chemical reactions. While this technique has been established for transmission measurements for a number of years, XAS measurements in fluorescence mode are challenging because of limitations in signal collection as well as detectors. Nevertheless, measurements in fluorescence mode are often the only option to study complex materials containing heavy matrices or in samples where the element of interest is in low concentration. Here, it has been demonstrated that high-quality quick-scanning full extended X-ray absorption fine-structure data can be readily obtained with sub-second time resolution in fluorescence mode, even for highly diluted samples. It has also been demonstrated that in challenging samples, where transmission measurements are not feasible, quick fluorescence can yield significant insight in reaction kinetics. By studying the fast high-temperature oxidation of a reduced LaFe0.8Ni0.8O3 perovskite type, an example where the perovskite matrix elements prevent measurements in fluorescence, it is shown that it is now possible to follow the state of Ni in situ at a 3 s time resolution.

13.
Chem Sci ; 11(2): 447-455, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-32190265

RESUMEN

The small pore zeolite Cu-SSZ-13 is an efficient material for the standard selective catalytic reduction of nitrogen oxides (NO x ) by ammonia (NH3). In this work, Cu-SSZ-13 has been studied at 250 °C under high conversion using a modulation excitation approach and analysed with phase sensitive detection (PSD). While the complementary X-ray absorption near edge structure (XANES) spectroscopy measurements showed that the experiments were performed under cyclic Cu+/Cu2+ redox, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments provide spectroscopic evidence for previously postulated intermediates Cu-N([double bond, length as m-dash]O)-NH2 and Cu-NO3 in the NH3-SCR deNO x mechanism and for the role of [Cu2+(OH-)]+. These results therefore help in building towards a more comprehensive understanding of the reaction mechanism which to date has only been postulated in silico.

14.
RSC Adv ; 10(19): 11507-11516, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35495338

RESUMEN

Supported ruthenium was used in the liquid phase catalytic transfer hydrogenation of furfural. To improve the stability of Ru against leaching, phosphorous was introduced on a Ru/Al2O3 based catalyst upon impregnation with ammonium hypophosphite followed by either reduction or calcination to study the effect of phosphorous on the physico-chemical properties of the active phase. Characterization using X-ray diffraction, solid state 31P nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, temperature programmed reduction with H2, infrared spectroscopy of pyridine adsorption from the liquid phase and transmission electron microscopy indicated that phosphorous induces a high dispersion of Ru, promotes Ru reducibility and is responsible for the formation of acid species of Brønsted character. As a result, the phosphorous-based catalyst obtained after reduction was more active for catalytic transfer hydrogenation of furfural and more stable against Ru leaching under these conditions than a benchmark Ru catalyst supported on activated carbon.

15.
Chimia (Aarau) ; 73(11): 913-921, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31753072

RESUMEN

Mixed oxides derived from the perovskite structure by combination of A- and B-site elements and by partial substitution of oxygen provide an immense playground of physico-chemical properties. Here, we give an account of our own research conducted at the Paul Scherrer Institute on perovskite-type oxides and oxynitrides used in electrochemical, photo(electro)chemical and catalytic processes aimed at facing energy relevant issues.

16.
Environ Sci Technol ; 52(22): 13381-13390, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30351026

RESUMEN

Log wood burning is a significant source of volatile organic compounds including aromatic hydrocarbons (ArHC). ArHC are harmful, are reactive in the ambient atmosphere, and are important secondary organic aerosol (SOA) precursors. Consequently, SOA represents a major fraction of the sub-micron organic aerosol pollution from log wood burning. ArHC reduction is thus critical in the mitigation of adverse health and environmental effects of log wood burning. In this study, two Pt-based catalytic converters were prepared and tested for the mitigation of real-world log wood burning emissions, including ArHC and SOA formation, as well as toxic carbon monoxide and methane, a greenhouse gas. Substantial removal of mono- and polycyclic ArHC and phenolic compounds was achieved with both catalysts operated at realistic chimney temperatures (50% conversion was achieved at 200 and 300 °C for non-methane hydrocarbons in our experiments for Pt/Al2O3 and Pt/CeO2-Al2O3, respectively). The catalytically cleaned emissions exhibited a substantially reduced SOA formation already at temperatures as low as 185-310 °C. This reduces the sub-micron PM burden of log wood burning significantly. Thus, catalytic converters can effectively reduce primary and secondary log wood burning pollutants and, thereby, their adverse health impacts and environmental effects.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Aromáticos , Aerosoles , Material Particulado , Madera
17.
Nat Commun ; 9(1): 2545, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29959324

RESUMEN

Increasing the use of natural gas engines is an important step to reduce the carbon footprint of mobility and power generation sectors. To avoid emissions of unburnt methane and the associated severe greenhouse effect of lean-burn engines, the stability of methane oxidation catalysts against steam-induced sintering at low temperatures (<500 °C) needs to be improved. Here we demonstrate how the combination of catalyst development and improved process control yields a highly efficient solution for complete methane oxidation. We design a material based on palladium and hierarchical zeolite with fully sodium-exchanged acid sites, which improves the support stability and prevents steam-induced palladium sintering under reaction conditions by confining the metal within the zeolite. Repeated short reducing pulses enable the use of a highly active transient state of the catalyst, which in combination with its high stability provides excellent performance without deactivation for over 90 h in the presence of steam.

18.
Chemphyschem ; 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673034

RESUMEN

Combinations of perovskite-type oxides with transition and precious metals exhibit a remarkable self-regenerable property that could be exploited for numerous practical applications. The objective of the present work was to study the reversibility of structural changes of perovskite-type oxides under cyclic reducing/oxidizing atmosphere by taking advantage of the reducibility of LaCoO3 . LaCoO3±Î´ and LaCo0.8 Cu0.2 O3±Î´ were prepared by ultrasonic spray combustion and were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and temperature-programmed reduction (TPR). XRD and XAS data confirmed that copper adopted the coordination environment of cobalt at the B-site of the rhombohedral LaCoO3 under the selected synthesis conditions. The structural evolution under reducing atmosphere was studied by in situ XRD and XANES supporting the assignment of the observed structural changes to the reduction of the perovskite-type oxide from ABB'O3 (B'=Cu) to B'0 /ABO3 and to B'0 B0 /A2 O3 . Successive redox cycles allowed the observation of a nearly complete reversibility of the perovskite phase, i. e. copper was able to revert into LaCoO3 upon oxidation. The reversible reduction/segregation of copper and incorporation at the B-site of the perovskite-type oxides could be used in chemical processes where the material can be functionalized by segregation of Cu and protected against irreversible structural changes upon re-oxidation.

19.
Chemphyschem ; 18(20): 2835-2839, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28700813

RESUMEN

Several strategies have been proposed to replace soluble metallorganic complexes in organic solvents by similar molecular entities immobilized on non-reactive solids. The characterization of these complexes at atomic and molecular level during synthesis is demanding but essential to guide rational design. In the present work, the formation of cobalt salicylaldimine complex on γ-aminopropyl modified silica (SiO2 ) was monitored in ethanol on-line by Fourier transform infrared spectroscopy (FTIR) and in situ X-ray absorption spectroscopy (XAS) simultaneously using two independent cells. The organic ligand was monitored by FTIR to follow the stepwise synthesis of the Co-salicylaldimine complex. The oxidation state of Co, obtained by XANES, was found to be +2, while different coordination environments were observed in the presence or absence of the pendant organic ligand produced in situ on SiO2 . EXAFS analysis inferred that the oxidation state and the local structure of the Co2+ ion on the modified SiO2 surface was similar to that of a salen-complex with four Co-O/N bonds.

20.
Anal Chem ; 89(11): 5801-5809, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28452471

RESUMEN

The combination of spectroscopic and diffraction methods to study chemical transformations is fundamental for the understanding of reaction mechanisms. The identification of short-lived species, likely active species, is often hindered by the contribution of spectator species not directly involved in the reaction. The present study considers two different approaches to obtain increased sensitivity to transient species for experiments obeying the modulated excitation paradigm and exploiting phase sensitive detection (PSD). First, the variation of the frequency of the external stimulation (ω) during the experiment is considered. We demonstrate using the Fourier analysis that the increase of ω, i.e., the decrease of the modulation period T, enhances the sensitivity to short-lived species. The second alternative is the use of a single stimulation frequency (ω) during the measurement and the variation of the demodulation frequency (nω) during data analysis. The absolute intensity of the phase-resolved signals is reduced by increasing n. However, species with slow kinetics are more attenuated than species with fast kinetics. Thus, transient species possessing fast kinetics are enhanced relative to other components and can be, in principle, discerned with improved sensitivity in the phase-resolved data obtained with n > 1. Experimental results in the field of heterogeneous catalysis are provided that support our findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...