Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649241

RESUMEN

α1-Antitrypsin (AAT) deficiency is a common genetic disease presenting with lung and liver diseases. AAT deficiency results from pathogenic variants in the SERPINA1 gene encoding AAT and the common mutant Z allele of SERPINA1 encodes for Z α1-antitrypsin (ATZ), a protein forming hepatotoxic polymers retained in the endoplasmic reticulum of hepatocytes. PiZ mice express the human ATZ and are a valuable model to investigate the human liver disease of AAT deficiency. In this study, we investigated differential expression of microRNAs (miRNAs) between PiZ and control mice and found that miR-34b/c was up-regulated and its levels correlated with intrahepatic ATZ. Furthermore, in PiZ mouse livers, we found that Forkhead Box O3 (FOXO3) driving microRNA-34b/c (miR-34b/c) expression was activated and miR-34b/c expression was dependent upon c-Jun N-terminal kinase (JNK) phosphorylation on Ser574 Deletion of miR-34b/c in PiZ mice resulted in early development of liver fibrosis and increased signaling of platelet-derived growth factor (PDGF), a target of miR-34b/c. Activation of FOXO3 and increased miR-34c were confirmed in livers of humans with AAT deficiency. In addition, JNK-activated FOXO3 and miR-34b/c up-regulation were detected in several mouse models of liver fibrosis. This study reveals a pathway involved in liver fibrosis and potentially implicated in both genetic and acquired causes of hepatic fibrosis.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Cirrosis Hepática , MAP Quinasa Quinasa 4/metabolismo , Regulación hacia Arriba , Animales , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/genética , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , MAP Quinasa Quinasa 4/genética , Masculino , Ratones , Ratones Noqueados , MicroARNs/biosíntesis , MicroARNs/genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
2.
J Biol Chem ; 295(38): 13213-13223, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723872

RESUMEN

α1-Antitrypsin (AAT) encoded by the SERPINA1 gene is an acute-phase protein synthesized in the liver and secreted into the circulation. Its primary role is to protect lung tissue by inhibiting neutrophil elastase. The Z allele of SERPINA1 encodes a mutant AAT, named ATZ, that changes the protein structure and leads to its misfolding and polymerization, which cause endoplasmic reticulum (ER) stress and liver disease through a gain-of-function toxic mechanism. Hepatic retention of ATZ results in deficiency of one of the most important circulating proteinase inhibitors and predisposes to early-onset emphysema through a loss-of-function mechanism. The pathogenetic mechanisms underlying the liver disease are not completely understood. C/EBP-homologous protein (CHOP), a transcription factor induced by ER stress, was found among the most up-regulated genes in livers of PiZ mice that express ATZ and in human livers of patients homozygous for the Z allele. Compared with controls, juvenile PiZ/Chop-/- mice showed reduced hepatic ATZ and a transcriptional response indicative of decreased ER stress by RNA-Seq analysis. Livers of PiZ/Chop-/- mice also showed reduced SERPINA1 mRNA levels. By chromatin immunoprecipitations and luciferase reporter-based transfection assays, CHOP was found to up-regulate SERPINA1 cooperating with c-JUN, which was previously shown to up-regulate SERPINA1, thus aggravating hepatic accumulation of ATZ. Increased CHOP levels were detected in diseased livers of children homozygous for the Z allele. In summary, CHOP and c-JUN up-regulate SERPINA1 transcription and play an important role in hepatic disease by increasing the burden of proteotoxic ATZ, particularly in the pediatric population.


Asunto(s)
Hepatopatías/metabolismo , Hígado/metabolismo , Mutación , Agregación Patológica de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción CHOP/metabolismo , alfa 1-Antitripsina/biosíntesis , Alelos , Animales , Estrés del Retículo Endoplásmico/genética , Humanos , Hígado/patología , Hepatopatías/genética , Hepatopatías/patología , Ratones , Ratones Noqueados , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Pliegue de Proteína , Proteínas Proto-Oncogénicas c-jun/genética , Factor de Transcripción CHOP/genética , Transcripción Genética , Regulación hacia Arriba , alfa 1-Antitripsina/genética
3.
J Hepatol ; 69(2): 325-335, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29580866

RESUMEN

BACKGROUND & AIMS: Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. METHODS: Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. RESULTS: Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. CONCLUSION: PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. LAY SUMMARY: Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival.


Asunto(s)
Isocumarinas/farmacología , L-Lactato Deshidrogenasa/metabolismo , Fallo Hepático Agudo , Hígado , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , Hígado/metabolismo , Fallo Hepático Agudo/tratamiento farmacológico , Fallo Hepático Agudo/metabolismo , Ratones , Ratones Endogámicos C57BL
4.
J Inherit Metab Dis ; 38(5): 895-904, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25601413

RESUMEN

Pyruvate dehydrogenase complex (PDHC) is a key enzyme in metabolism linking glycolysis to tricarboxylic acid cycle and its activity is tightly regulated by phosphorylation catalyzed by four pyruvate dehydrogenase kinase (PDK) isoforms. PDKs are pharmacological targets for several human diseases including cancer, diabetes, obesity, heart failure, and inherited PDHC deficiency. We investigated the inhibitory activity of phenylbutyrate toward PDKs and found that PDK isoforms 1-to-3 are inhibited whereas PDK4 is unaffected. Moreover, docking studies revealed putative binding sites of phenylbutyrate on PDK2 and 3 that are located on different sites compared to dichloroacetate (DCA), a previously known PDK inhibitor. Based on these findings, we showed both in cells and in mice that phenylbutyrate combined to DCA results in greater increase of PDHC activity compared to each drug alone. These results suggest that therapeutic efficacy can be enhanced by combination of drugs increasing PDHC enzyme activity.


Asunto(s)
Ácido Dicloroacético/farmacología , Fenilbutiratos/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Ácido Dicloroacético/química , Ácido Dicloroacético/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fenilbutiratos/química , Fenilbutiratos/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Complejo Piruvato Deshidrogenasa/antagonistas & inhibidores , Complejo Piruvato Deshidrogenasa/química , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/metabolismo
5.
Ann Clin Transl Neurol ; 1(7): 462-70, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25356417

RESUMEN

OBJECTIVE: Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. PDHC deficiency is genetically heterogenous and most patients have defects in the X-linked E1-α gene but defects in the other components of the complex encoded by PDHB, PDHX, DLAT, DLD genes or in the regulatory enzyme encoded by PDP1 have also been found. Phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of pyruvate dehydrogenase kinases and thus, has potential for therapy of patients with PDHC deficiency. In the present study, we investigated response to phenylbutyrate of multiple cell lines harboring all known gene defects resulting in PDHC deficiency. METHODS: Fibroblasts of patients with PDHC deficiency were studied for their enzyme activity at baseline and following phenylbutyrate incubation. Drug responses were correlated with genotypes and protein levels by Western blotting. RESULTS: Large deletions affecting PDHA1 that result in lack of detectable protein were unresponsive to phenylbutyrate, whereas increased PDHC activity was detected in most fibroblasts harboring PDHA1 missense mutations. Mutations affecting the R349-α residue were directed to proteasome degradation and were consistently unresponsive to short-time drug incubation but longer incubation resulted in increased levels of enzyme activity and protein that may be due to an additional effect of phenylbutyrate as a molecular chaperone. INTERPRETATION: PDHC enzyme activity was enhanced by phenylbutyrate in cells harboring missense mutations in PDHB, PDHX, DLAT, DLD, and PDP1 genes. In the prospect of a clinical trial, the results of this study may allow prediction of in vivo response in patients with PDHC deficiency harboring a wide spectrum of molecular defects.

7.
Sci Transl Med ; 5(175): 175ra31, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467562

RESUMEN

Lactic acidosis is a buildup of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57BL/6 wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noa(m631) zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis.


Asunto(s)
Acidosis Láctica/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Fosforilación
8.
Proc Natl Acad Sci U S A ; 107(33): 14621-6, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20679242

RESUMEN

A bottleneck in drug discovery is the identification of the molecular targets of a compound (mode of action, MoA) and of its off-target effects. Previous approaches to elucidate drug MoA include analysis of chemical structures, transcriptional responses following treatment, and text mining. Methods based on transcriptional responses require the least amount of information and can be quickly applied to new compounds. Available methods are inefficient and are not able to support network pharmacology. We developed an automatic and robust approach that exploits similarity in gene expression profiles following drug treatment, across multiple cell lines and dosages, to predict similarities in drug effect and MoA. We constructed a "drug network" of 1,302 nodes (drugs) and 41,047 edges (indicating similarities between pair of drugs). We applied network theory, partitioning drugs into groups of densely interconnected nodes (i.e., communities). These communities are significantly enriched for compounds with similar MoA, or acting on the same pathway, and can be used to identify the compound-targeted biological pathways. New compounds can be integrated into the network to predict their therapeutic and off-target effects. Using this network, we correctly predicted the MoA for nine anticancer compounds, and we were able to discover an unreported effect for a well-known drug. We verified an unexpected similarity between cyclin-dependent kinase 2 inhibitors and Topoisomerase inhibitors. We discovered that Fasudil (a Rho-kinase inhibitor) might be "repositioned" as an enhancer of cellular autophagy, potentially applicable to several neurodegenerative disorders. Our approach was implemented in a tool (Mode of Action by NeTwoRk Analysis, MANTRA, http://mantra.tigem.it).


Asunto(s)
Antineoplásicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Algoritmos , Antineoplásicos/clasificación , Autofagia/efectos de los fármacos , Western Blotting , Camptotecina/análogos & derivados , Camptotecina/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Descubrimiento de Drogas/métodos , Flavonoides/farmacología , Lógica Difusa , Células HeLa , Humanos , Irinotecán , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Pirroles/farmacología , ARN Polimerasa II/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...