Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36395058

RESUMEN

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Prueba de COVID-19 , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Estudios Prospectivos , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Péptidos
2.
Elife ; 102021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34747696

RESUMEN

Reliable, robust, large-scale molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for monitoring the ongoing coronavirus disease 2019 (COVID-19) pandemic. We have developed a scalable analytical approach to detect viral proteins based on peptide immuno-affinity enrichment combined with liquid chromatography-mass spectrometry (LC-MS). This is a multiplexed strategy, based on targeted proteomics analysis and read-out by LC-MS, capable of precisely quantifying and confirming the presence of SARS-CoV-2 in phosphate-buffered saline (PBS) swab media from combined throat/nasopharynx/saliva samples. The results reveal that the levels of SARS-CoV-2 measured by LC-MS correlate well with their correspondingreal-time polymerase chain reaction (RT-PCR) read-out (r = 0.79). The analytical workflow shows similar turnaround times as regular RT-PCR instrumentation with a quantitative read-out of viral proteins corresponding to cycle thresholds (Ct) equivalents ranging from 21 to 34. Using RT-PCR as a reference, we demonstrate that the LC-MS-based method has 100% negative percent agreement (estimated specificity) and 95% positive percent agreement (estimated sensitivity) when analyzing clinical samples collected from asymptomatic individuals with a Ct within the limit of detection of the mass spectrometer (Ct ≤ 30). These results suggest that a scalable analytical method based on LC-MS has a place in future pandemic preparedness centers to complement current virus detection technologies.


Asunto(s)
COVID-19/diagnóstico , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Técnicas de Diagnóstico Molecular/métodos , Proteínas Virales/análisis , COVID-19/virología , Humanos , Modelos Lineales , Nasofaringe/virología , Fragmentos de Péptidos/análisis , Proteómica , Reproducibilidad de los Resultados , SARS-CoV-2/química , Sensibilidad y Especificidad
3.
Redox Biol ; 28: 101318, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31546169

RESUMEN

Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.


Asunto(s)
Aurora Quinasa A/química , Aurora Quinasa A/metabolismo , Coenzima A/administración & dosificación , Animales , Coenzima A/química , Coenzima A/farmacología , Cristalografía por Rayos X , Células HEK293 , Células Hep G2 , Humanos , Ratones , Modelos Moleculares , Estrés Oxidativo , Fosforilación , Conformación Proteica , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
4.
Methods Mol Biol ; 1889: 301-317, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30367422

RESUMEN

Protein phosphorylation is a universal covalent chemical modification of amino acids involved in a large number of biological processes including cell signaling, metabolism, proliferation, differentiation, survival/death, ageing, and many more. Regulation of protein phosphorylation is essential in myogenesis and indeed, when the enzymatic activity of protein kinases is distrupted in myoblasts, myogenesis is affected. In this chapter we describe a method to profile the phosphoproteome of myoblasts using mass spectrometry. Phosphate groups are labile and easily lost during the processing of samples for mass spectrometry. Thus, effective methods to enrich for phosphopeptides from protein extracts have been developed. Here, we discuss and present in detail two such methods that we routinely employ. These methods are based on a sample enrichment step performed on titanium dioxide matrices followed by label-free tandem mass spectrometry and semi-quantitation.


Asunto(s)
Desarrollo de Músculos , Mioblastos/metabolismo , Fosfoproteínas/metabolismo , Proteoma , Proteómica , Transducción de Señal , Cromatografía Liquida , Fosfopéptidos/metabolismo , Fosforilación , Proteómica/métodos , Espectrometría de Masas en Tándem , Flujo de Trabajo
5.
Sci Signal ; 11(549)2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30254057

RESUMEN

A major challenge associated with biochemical and cellular analysis of pseudokinases is a lack of target-validated small-molecule compounds with which to probe function. Tribbles 2 (TRIB2) is a cancer-associated pseudokinase with a diverse interactome, including the canonical AKT signaling module. There is substantial evidence that human TRIB2 promotes survival and drug resistance in solid tumors and blood cancers and therefore is of interest as a therapeutic target. The unusual TRIB2 pseudokinase domain contains a unique cysteine-rich C-helix and interacts with a conserved peptide motif in its own carboxyl-terminal tail, which also supports its interaction with E3 ubiquitin ligases. We found that TRIB2 is a target of previously described small-molecule protein kinase inhibitors, which were originally designed to inhibit the canonical kinase domains of epidermal growth factor receptor tyrosine kinase family members. Using a thermal shift assay, we discovered TRIB2-binding compounds within the Published Kinase Inhibitor Set (PKIS) and used a drug repurposing approach to classify compounds that either stabilized or destabilized TRIB2 in vitro. TRIB2 destabilizing agents, including the covalent drug afatinib, led to rapid TRIB2 degradation in human AML cancer cells, eliciting tractable effects on signaling and survival. Our data reveal new drug leads for the development of TRIB2-degrading compounds, which will also be invaluable for unraveling the cellular mechanisms of TRIB2-based signaling. Our study highlights that small molecule-induced protein down-regulation through drug "off-targets" might be relevant for other inhibitors that serendipitously target pseudokinases.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/enzimología , Afatinib/farmacología , Alelos , Inhibidores Enzimáticos/farmacología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos , Transducción de Señal , Bibliotecas de Moléculas Pequeñas , Células U937
6.
Curr Opin Chem Biol ; 42: 167-176, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29331721

RESUMEN

Ion mobility-mass spectrometry (IM-MS) is an important addition to the analytical toolbox for the structural evaluation of proteins, and is enhancing many areas of biophysical analysis. Disease-associated proteins, including enzymes such as protein kinases, transcription factors exemplified by p53, and intrinsically disordered proteins, including those prone to aggregation, are all amenable to structural analysis by IM-MS. In this review we discuss how this powerful technique can be used to understand protein conformational dynamics and aggregation pathways, and in particular, the effect that small molecules, including clinically-relevant drugs, play in these processes. We also present examples of how IM-MS can be used as a relatively rapid screening strategy to evaluate the mechanisms and conformation-driven aspects of protein:ligand interactions.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/química , Proteínas Quinasas/metabolismo , Proteínas/química , Proteínas/metabolismo , Humanos , Ligandos , Estructura Molecular , Unión Proteica , Conformación Proteica
7.
J Cell Biol ; 216(11): 3571-3590, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28972102

RESUMEN

Establishing the bipolar spindle in mammalian oocytes after their prolonged arrest is crucial for meiotic fidelity and subsequent development. In contrast to somatic cells, the first meiotic spindle assembles in the absence of centriole-containing centrosomes. Ran-GTP can promote microtubule nucleation near chromatin, but additional unidentified factors are postulated for the activity of multiple acentriolar microtubule organizing centers in the oocyte. We now demonstrate that partially overlapping, nonredundant functions of Aurora A and Plk4 kinases contribute to initiate acentriolar meiosis I spindle formation. Loss of microtubule nucleation after simultaneous chemical inhibition of both kinases can be significantly rescued by drug-resistant Aurora A alone. Drug-resistant Plk4 can enhance Aurora A-mediated rescue, and, accordingly, Plk4 can phosphorylate and potentiate the activity of Aurora A in vitro. Both kinases function distinctly from Ran, which amplifies microtubule growth. We conclude that Aurora A and Plk4 are rate-limiting factors contributing to microtubule growth as the acentriolar oocyte resumes meiosis.


Asunto(s)
Aurora Quinasa A/metabolismo , Centriolos/enzimología , Meiosis , Microtúbulos/enzimología , Oocitos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/genética , Células Cultivadas , Centriolos/efectos de los fármacos , Técnicas de Cultivo de Embriones , Femenino , Cinética , Meiosis/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Microtúbulos/efectos de los fármacos , Oocitos/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Proteína de Unión al GTP ran/metabolismo
8.
J Proteome Res ; 16(9): 3448-3459, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28741359

RESUMEN

Confident identification of sites of protein phosphorylation by mass spectrometry (MS) is essential to advance understanding of phosphorylation-mediated signaling events. However, the development of novel instrumentation requires that methods for MS data acquisition and its interrogation be evaluated and optimized for high-throughput phosphoproteomics. Here we compare and contrast eight MS acquisition methods on the novel tribrid Orbitrap Fusion MS platform using both a synthetic phosphopeptide library and a complex phosphopeptide-enriched cell lysate. In addition to evaluating multiple fragmentation regimes (HCD, EThcD, and neutral-loss-triggered ET(ca/hc)D) and analyzers for MS/MS (orbitrap (OT) versus ion trap (IT)), we also compare two commonly used bioinformatics platforms, Andromeda with PTM-score, and MASCOT with ptmRS for confident phosphopeptide identification and, crucially, phosphosite localization. Our findings demonstrate that optimal phosphosite identification is achieved using HCD fragmentation and high-resolution orbitrap-based MS/MS analysis, employing MASCOT/ptmRS for data interrogation. Although EThcD is optimal for confident site localization for a given PSM, the increased duty cycle compared with HCD compromises the numbers of phosphosites identified. Finally, our data highlight that a charge-state-dependent fragmentation regime and a multiple algorithm search strategy are likely to be of benefit for confident large-scale phosphosite localization.


Asunto(s)
Espectrometría de Masas/métodos , Osteoblastos/metabolismo , Fragmentos de Péptidos/análisis , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Algoritmos , Benchmarking , Línea Celular Tumoral , Humanos , Espectrometría de Masas/instrumentación , Osteoblastos/citología , Fosfoproteínas/química , Fosforilación , Programas Informáticos
9.
Mol Biosyst ; 12(12): 3651-3665, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27731453

RESUMEN

Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCß) in the regulatory spine of PKCß, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats.


Asunto(s)
Biología Computacional/métodos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Análisis de Secuencia/métodos , Programas Informáticos , Secuencia de Aminoácidos , Mutación , Fosforilación , Posición Específica de Matrices de Puntuación , Dominios y Motivos de Interacción de Proteínas , Proteína Quinasa C beta/genética , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Factores de Crecimiento de Fibroblastos/química , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas/química , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética
11.
Biochem J ; 473(19): 3159-75, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27444646

RESUMEN

cAMP-dependent protein kinase (PKA) is an archetypal biological signaling module and a model for understanding the regulation of protein kinases. In the present study, we combine biochemistry with differential scanning fluorimetry (DSF) and ion mobility-mass spectrometry (IM-MS) to evaluate effects of phosphorylation and structure on the ligand binding, dynamics and stability of components of heteromeric PKA protein complexes in vitro We uncover dynamic, conformationally distinct populations of the PKA catalytic subunit with distinct structural stability and susceptibility to the physiological protein inhibitor PKI. Native MS of reconstituted PKA R2C2 holoenzymes reveals variable subunit stoichiometry and holoenzyme ablation by PKI binding. Finally, we find that although a 'kinase-dead' PKA catalytic domain cannot bind to ATP in solution, it interacts with several prominent chemical kinase inhibitors. These data demonstrate the combined power of IM-MS and DSF to probe PKA dynamics and regulation, techniques that can be employed to evaluate other protein-ligand complexes, with broad implications for cellular signaling.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fluorometría/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Sondas Moleculares , Fosforilación
12.
PLoS Genet ; 12(2): e1005885, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26925779

RESUMEN

Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they share features of both PTKs and STKs in the core. Finally, our studies provide an evolutionary framework for identifying and characterizing disease and drug resistance mutations in the kinase core.


Asunto(s)
Evolución Molecular , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Aurora Quinasa A/química , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Dominio Catalítico , Secuencia Conservada , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor EphA3 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...