RESUMEN
The design of luminescent nanomaterials for the development of nanothermometers with high sensitivity and free of potentially toxic metals has developed in several fields, such as optoelectronics, sensors, and bioimaging. In addition, luminescent nanothermometers have advantages related to non-invasive measurement, with their wide detection range and high spatial resolution at the nano/microscale. Our study is the first, to our knowledge, to demonstrate a detailed study of a fluorescent film (Film-L) thermal sensor based on carbon dots derived from lemon bagasse extract (CD-L). The CD-L properties were explored as an antioxidant agent; their cytotoxicity was evaluated by using a human non-tumoral skin fibroblast (HFF-1) cell line from an MTT assay. The CD-L were characterized by HRTEM, DLS, FTIR, UV-VIS, and fluorescence spectroscopy. These confirmed their particle size distribution below 10 nm, graphitic structure in the core and surface organic groups, and strong blue emission. The CD-L showed cytocompatibility behavior and scavenging potential reactive species of biological importance: O2â¢- and HOCl, with IC50 of 276.8 ± 4.0 and 21.6 ± 0.7, respectively. The Film-L emission intensities (I425 nm) are temperature-dependent in the 298 to 333 K range. The Film-L luminescent thermometer shows a maximum relative thermal sensitivity of 2.69 % K-1 at 333 K.
Asunto(s)
Antioxidantes , Puntos Cuánticos , Humanos , Antioxidantes/farmacología , Carbono/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia , Luminiscencia , Puntos Cuánticos/químicaRESUMEN
In the present study, we examined the antinociceptive and anti-inflammatory activities of a guanylhydrazone derivative, (E)-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-guanylhydrazone hydrochloride (LQM10), in mice. The antinociceptive effect was determined by assessing behavioural responses in different pain models, while anti-inflammatory activity was examined in carrageenan-induced pleurisy. Intraperitoneal LQM10 administration reduced the acetic acid-induced nociceptive behaviour, a phenomenon that was unaltered by pretreatment with yohimbine, atropine, naloxone or glibenclamide. In the formalin assay, LQM10 reduced nociceptive behaviour only in the second phase, indicating an inhibitory effect on inflammatory pain. LQM10 did not alter the pain latency in the hot plate assay and did not impact the locomotor activity of mice in the rotarod assay. In the carrageenan-induced pleurisy assay, LQM10 treatment inhibited critical events involved in inflammatory responses, namely, leucocyte recruitment, plasma leakage and increased inflammatory mediators (tumour necrosis factor Like Properties of Chalchones and Flavonoid Derivatives [TNF]-α and interleukin [IL]-1ß) in the pleural exudate. Overall, these results indicate that LQM10 exhibits antinociceptive effects associated with peripheral mechanisms and anti-inflammatory activity mediated via a reduction in leucocyte migration and proinflammatory mediators, rendering this compound a promising candidate for treating pain and inflammatory process.
Asunto(s)
Analgésicos , Pleuresia , Animales , Ratones , Analgésicos/efectos adversos , Carragenina , Nocicepción , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Extractos Vegetales/farmacología , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Factor de Necrosis Tumoral alfa , Edema/inducido químicamente , Edema/tratamiento farmacológicoRESUMEN
AIM: Hydroxycinnamic acids their derivatives have various pharmacological properties. The hydroxycinnamic acid derivatives, methyl cinnamate, trans-cinnamic, and p-coumaric acids have been the object of study in the treatment of skin wounds. However, it is unclear whether these derivatives exert a direct beneficial effect on fibroblast function. In this study, we evaluated the effects of methyl cinnamate, trans-cinnamic, and p-coumaric acids on fibroblast migration in vitro. MATERIALS AND METHODS: NIH 3T3 and L929 fibroblast cell lines were exposed to each drug at several concentrations and the effect on cell viability, cell cycle, and extracellular matrix production were assessed by MTT assay, flow cytometry, and immunofluorescence staining, respectively. The effect on cell migration was examined using scratch assay. RESULTS: The results showed that hydroxycinnamic acid derivatives not affect cell viability, but increase fibroblast migration in the in vitro scratch-wound healing assay. They also induced an increase in S and G2/M phases accompanied by a decrease in the G0/G1 phase of the cell cycle. The cell proliferation inhibitor mitomycin C abolished the effect induced by p-coumaric acid and methyl cinnamate, indicating that only the trans-cinnamic acid stimulated migration. A transwell migration assay confirmed that trans-cinnamic acid-treated fibroblasts exhibited increased migration compared with untreated cells. trans-Cinnamic acid-induced fibroblast migration was decreased by PKA inhibitor and p38-MAPK inhibitor but not by JNK inhibitor. Additionally, trans-cinnamic acid-treated fibroblasts showed an increase in the production of laminin and collagen type I. CONCLUSION: Our study showed that trans-cinnamic acid improves fibroblast migration and modulates extracellular matrix synthesis, indicating its potential for accelerating the healing process.
Asunto(s)
Movimiento Celular/efectos de los fármacos , Cinamatos/farmacología , Fibroblastos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ácidos Cumáricos/farmacología , Fibroblastos/fisiología , Humanos , Cicatrización de Heridas/efectos de los fármacosRESUMEN
Acute lung injury (ALI) remains to cause a high rate of mortality in critically ill patients. It is known that inflammation is a key factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI, which makes it a relevant approach to the treatment of ALI. In this study, we evaluated the potential of nasally instilled p-coumaric acid to prevent LPS-induced ALI in mice, by evaluating its effects on cellular and molecular targets involved in inflammatory response via in vitro and in silico approaches. Our results demonstrated that p-coumaric acid reduced both neutrophil accumulation and pro-inflammatory cytokine abundance, and simultaneously increased IL-10 production at the site of inflammation, potentially contributing to protection against LPS-induced ALI in mice. In the in vitro experiments, we observed inhibitory effects of p-coumaric acid against IL-6 and IL-8 production in stimulated A549 cells, as well as reactive oxygen species generation by neutrophils. In addition, p-coumaric acid treatment decreased neutrophil adhesion on the TNF-α-stimulated endothelial cells. According to the in silico predictions, p-coumaric acid reached stable interactions with both the ATP-binding site of IKKß as well as the regions within LFA-1, critical for interaction with ICAM-1, thereby suppressing the production of proinflammatory mediators and hindering the neutrophil infiltration, respectively. Collectively, these findings indicate that p-coumaric acid is a promising anti-inflammatory agent that can be used for developing a pharmaceutical drug for the treatment of ALI and other inflammatory disorders.
Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Antiinflamatorios/administración & dosificación , Ácidos Cumáricos/administración & dosificación , Pulmón/efectos de los fármacos , Células A549 , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Administración Intranasal , Animales , Antiinflamatorios/metabolismo , Sitios de Unión , Técnicas de Cocultivo , Simulación por Computador , Ácidos Cumáricos/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Uvaol is a natural pentacyclic triterpene that is widely found in olives and virgin olive oil, exerting various pharmacological properties. However, information remains limited about how it affects fibroblasts and endothelial cells in events associated with wound healing. Here, we report the effect of uvaol in the in vitro and in vivo healing process. We show the positive effects of uvaol on migration of fibroblasts and endothelial cells in the scratch assay. Protein synthesis of fibronectin and laminin (but not collagen type I) was improved in uvaol-treated fibroblasts. In comparison, tube formation by endothelial cells was enhanced after uvaol treatment. Mechanistically, the effects of uvaol on cell migration involved the PKA and p38-MAPK signaling pathway in endothelial cells but not in fibroblasts. Thus, the uvaol-induced migratory response was dependent on the PKA pathway. Finally, topical treatment with uvaol caused wounds to close faster than in the control treatment using experimental cutaneous wounds model in mice. In conclusion, uvaol positively affects the behavior of fibroblasts and endothelial cells, potentially promoting cutaneous healing.
Asunto(s)
Células Endoteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Piel/efectos de los fármacos , Triterpenos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/citología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citología , Cinética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Piel/patología , Piel/fisiopatología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Cyclo-Gly-Pro (CGP) attenuates nociception, however its effects on salivary glands remain unclear. In this study, we investigated the acute effects of CGP on salivary flow and composition, and on the submandibular gland composition, compared with morphine. Besides, we characterized the effects of naloxone (a non-selective opioid receptor antagonist) on CGP- and morphine-induced salivary and glandular alterations in mice. After that, in silico analyses were performed to predict the interaction between CGP and opioid receptors. Morphine and CGP significantly reduced salivary flow and total protein concentration of saliva and naloxone restored them to the physiological levels. Morphine and CGP also reduced several infrared vibrational modes (Amide I, 1687-1594cm-1; Amide II, 1594-1494cm-1; CH2/CH3, 1488-1433cm-1; C = O, 1432-1365cm-1; PO2 asymmetric, 1290-1185cm-1; PO2 symmetric, 1135-999cm-1) and naloxone reverted these alterations. The in silico docking analysis demonstrated the interaction of polar contacts between the CGP and opioid receptor Cys219 residue. Altogether, we showed that salivary hypofunction and glandular changes elicited by CGP may occur through opioid receptor suggesting that the blockage of opioid receptors in superior cervical and submandibular ganglions may be a possible strategy to restore salivary secretion while maintaining antinociceptive action due its effects on the central nervous system.
Asunto(s)
Ganglios Parasimpáticos/efectos de los fármacos , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Péptidos Cíclicos/farmacología , Glándulas Salivales/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Sitios de Unión , Ganglios Parasimpáticos/metabolismo , Ganglios Parasimpáticos/fisiología , Masculino , Ratones , Morfina/farmacología , Nocicepción , Unión Proteica , Receptores Opioides/química , Receptores Opioides/metabolismo , Saliva/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/fisiologíaRESUMEN
Allergic inflammation is a response of the body against pathogens by cytokine release and leucocyte recruitment. Recently, there was an increase in morbimortality associated with allergic inflammation, especially asthma. The treatment has many adverse effects, requiring the search for new therapies. Monoterpenes are natural products with anti-inflammatory activity demonstrated in several studies and can be an option to inflammation management. Thus, we investigated the effects of citronellol, α-terpineol and carvacrol on allergic inflammation. The model of asthma was established by OVA induction in male Swiss mice. The monoterpenes were administered (25, 50 or 100 mg/kg, i.p.) 1 h before induction. After 24hs, the animals were sacrificed to leucocytes and TNF-α quantification. Monoterpenes significantly decrease leucocyte migration and TNF-α levels, possibly by modulation of COX, PGE2 and H1 receptor, as demonstrated by molecular docking. These findings indicate that alcoholic monoterpenes can be an alternative for treatment of allergic inflammation and asthma.
Asunto(s)
Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Monoterpenos/farmacología , Aceites Volátiles/química , Especias , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Asma/inducido químicamente , Asma/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Masculino , Ratones , Simulación del Acoplamiento Molecular , Monoterpenos/química , Ovalbúmina/efectos adversos , Receptores Histamínicos H1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
OBJECTIVE: The aim of this study is to investigate the effects of topical growth hormone (GH) treatment on skin wound healing in mice. MATERIALS AND METHODS: An excisional wound healing model was established on male Swiss mice, and wound healing ability was evaluated by macroscopic and histologic analyses of mice treated with topical 10-8 M and 10-7 M of GH versus the mice receiving ve- hicle alone. Wound tissues were collected on post treatment days 3, 7, and 14. Skin fragments were subjected to hematoxylin and eo- sin and Masson's trichrome staining for morphological analyses. The expression of type I collagen and platelet endothelial cell adhesion molecule 1 (CD31) was detected by immunohistochemical analysis. RESULTS: Topical treatment with GH resulted in faster wound closure rates at all time points analyzed versus those observed in the control group (day 3: 18.3 ± 3.1 vs. 44.4 ± 7.4, 43.6 ± 0.6; day 7: 41.7 ± 6.3 vs. 73.8 ± 6.6, 71.3 ± 5.8; day 12: 94.3 ± 3.9 vs. 100 ± 0, 100 ± 0). Histological analysis of the wound on post treatment day 3 revealed a more diffused in ltration of in ammatory cells in the group treated with GH. After day 7, GH-treated animals began form- ing granulation tissue, and there was an increase in in ammatory cell in ltration. The GH signi cantly increased the expression of type I collagen (day 7: 57.4 ± 4.0 vs. 120.2 ± 9.7, 79.3 ± 7.9; day 14: 218.2 ± 10.4 vs. 301.5 ± 9.1, 235.0 ± 7.5) as well as the number of blood vessels (day 7: 10.0 ± 2.4 vs. 15.3 ± 2.0, 10.1 ± 2.2; day 14: 3.2 ± 0.8 vs. 5.6 ± 2.0, 6.2 ± 2.2) in the injured area. CONCLUSIONS: The GH accelerates the closure of skin wounds by resolving the in- ammatory phase faster, accelerating reepithelialization and collagen deposition, and stimulating angiogenesis.
Asunto(s)
Tejido de Granulación/efectos de los fármacos , Tejido de Granulación/patología , Hormona del Crecimiento/farmacología , Piel/efectos de los fármacos , Piel/patología , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología , Administración Tópica , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Piel/lesionesRESUMEN
CONTEXT: Propolis has promising biological activities. Propolis samples from the Northeast of Bahia, Brazil - sample A from Ribeira do Pombal and B, from Tucano - were investigated, with new information regarding their biological activities. OBJECTIVE: This paper describes the chemical profile, antioxidant, anti-glycation and cytotoxic activities of these propolis samples. MATERIAL AND METHODS: Ethanol extracts of these propolis samples (EEP) and their fractions were analyzed to determine total phenolic content (TPC); antioxidant capacity through DPPHâ¢, FRAP and lipid peroxidation; anti-glycation activity, by an in vitro glucose (10 mg/mL) bovine serum albumine (1 mg/mL) assay, during 7 d; cytotoxic activity on cancer (SF295, HCT-116, OVCAR-8, MDA-MB435, MX-1, MCF7, HL60, JURKAT, MOLT-4, K562, PC3, DU145) and normal cell lines (V79) at 0.04-25 µg/mL concentrations, for 72 h. The determination of primary phenols by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and volatile organic compounds content by gas chromatography-mass spectrometry (GC-MS) were also performed. RESULTS: The EEP polar fractions exhibited up to 90% protection against lipid peroxidation. The IC50 value for anti-glycation activity of EEP was between 16.5 and 19.2 µg/mL, close to aminoguanidine (IC50 = 7.7 µg/mL). The use of UHPLC-MS/MS and GC-MS allowed the identification of 12 bioactive phenols in the EEP and 24 volatile compounds, all already reported. CONCLUSIONS: The samples present good antioxidant/anti-glycation/cytotoxic activities and a plethora of biologically active compounds. These results suggest a potential role of propolis in targeting ageing and diseases associated with oxidative and carbonylic stress, aggregating value to them.
Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas , Hipoglucemiantes/farmacología , Polifenoles/farmacología , Própolis/química , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antioxidantes/efectos adversos , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Productos Biológicos/efectos adversos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Brasil , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Peroxidación de Lípido/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Estructura Molecular , Polifenoles/efectos adversos , Polifenoles/química , Polifenoles/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en TándemRESUMEN
The supramolecular nano-aggregate CUR-CB[7] (CUR = curcumin and CB[7] = cucurbit[7]uril) was efficiently prepared by mixing CUR and CB[7] at a molar ratio of 1 : 1 in ethanol at room temperature. The supramolecular aggregate formation was evidenced by mainly FTIR, 1H NMR, DOSY and spectroscopy experiments. The supramolecular arrangement promotes the increase in the solubility and stability of CUR without affecting the biological properties of the A549 cells. The luminescence properties of CUR and CUR-CB[7] show anti-Kasha's rule fluorescence, and their remarkable NIR emission enables this material to be used as a luminescent probe and marker for in vivo tracking and structural integrity monitoring of the supramolecular complex.
Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Hidrocarburos Aromáticos con Puentes/química , Curcumina/química , Imidazoles/química , Nanopartículas/química , Células Cultivadas , Humanos , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Procesos FotoquímicosRESUMEN
The present study aimed to investigate the antinociceptive and anti-inflammatory effects of the cyclic dipeptide cyclo-Gly-Pro (CGP) in mice. Antinociceptive activity was assessed by employing different pain models, such as formalin test, acetic acid-induced writhing, hot plate test, and carrageenan-induced hyperalgesia, in mice. The number of c-Fos-immunoreactive cells in the periaqueductal gray (PAG) was evaluated in CGP-treated mice. Anti-inflammatory activity was evaluated using paw oedema induced by carrageenan, compound 48/80, serotonin, and prostaglandin E2 (PGE2) and analyzed by plethysmometry. Quantitation of myeloperoxidase (MPO) in the paw was carried out to analyze the presence of neutrophils in the tissue. Intraperitoneal injection of CGP produced a significant inhibition in both neurogenic and inflammatory phases of formalin-induced pain. The antinociceptive effect of CGP, evaluated in the acetic acid-induced writhing test, was detected for up to 6 h after treatment. Further, in the hot plate test, antinociceptive behaviour was evoked by CGP, and this response was inhibited by naloxone. Animals treated with CGP did not present changes in motor performance. In CGP-treated mice there was an increase in the number of c-Fos-positive neurons in the periaqueductal gray. In another set of experiments, CGP attenuated the hyperalgesic response induced by carrageenan. Furthermore, CGP also reduced the carrageenan-increased MPO activity in paws. In addition, CGP also reduced the paw oedema evoked by compound 48/80, serotonin, and PGE2 . Taken together, these results may support a possible therapeutic application of the cyclic dipeptide cyclo-Gly-Pro toward alleviating nociception and damage caused by inflammation conditions.
Asunto(s)
Analgésicos/farmacología , Antiinflamatorios/farmacología , Conducta Animal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Péptidos Cíclicos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Masculino , Ratones , Péptidos Cíclicos/uso terapéutico , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Prueba de Desempeño de Rotación con Aceleración ConstanteRESUMEN
In the present study, siaresinolic acid (siaresinol, SA) was isolated from the leaves of Sabicea grisea and studied to evaluate its antinociceptive and anti-inflammatory activity. The antinociceptive effect of SA was investigated in mice using different animal models to study pain. In the acetic acid-induced writhing test, intraperitoneal (i.p.) injection of SA (0.1, 1, and 10 mg/kg, i.p.) 1 h before a pain stimulus significantly reduced the nociceptive response (by 42.3, 68.2, and 70.9 %, respectively). Pretreatment with glibenclamide, but not with yohimbine, metoclopramide, ketanserin, or naloxone, restored the antinociceptive effect induced by SA in the writhing test, suggesting that the K(+)ATP channel pathway might be involved in its mechanism of action. In the formalin test, SA (1 mg/kg, i.p.) decreased licking time in the second phase only, thereby indicating an anti-inflammatory effect. In the hot plate test, there was no significant difference in nociceptive behavior. In the rota-rod test, it was verified that a high dose of SA (10 mg/kg, i.p.) did not affect the locomotor activity of mice. In the pleurisy model, induced by carrageenan, treatment with SA inhibited important events involved in inflammatory responses, namely leukocyte influx, plasma leakage, and increased inflammatory mediators (TNF-α, IL-1ß, and chemokine CXCL1), in the pleural exudate. Additionally, SA itself was not cytotoxic when evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in macrophages cultured for 24 h at concentrations ranging from 1 to 200 µg/mL. These results suggest, for the first time, that SA attenuates nociceptive behavior through mechanisms involving receptors for ATP-dependent potassium channels, in addition to suppressing acute inflammatory responses.
Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Fitoterapia , Rubiaceae/química , Triterpenos/uso terapéutico , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Carragenina , Modelos Animales de Enfermedad , Formaldehído , Inflamación/inducido químicamente , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Dolor/inducido químicamente , Dimensión del Dolor , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Pleuresia/inducido químicamente , Pleuresia/tratamiento farmacológico , Pleuresia/metabolismo , Canales de Potasio/metabolismo , Triterpenos/aislamiento & purificación , Triterpenos/farmacología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
This study aimed at synthesizing the carvacrol propionate (CP) and evaluating its pharmacological profile. CP was obtained from carvacrol and propionyl chloride through an esterification reaction. Male Swiss mice were treated with CP (25, 50, or 100 mg/kg). We evaluated the analgesic effect, mechanical hyperalgesia, and anti-inflammatory effect. Pre-treatment with CP inhibited (p<0.01 and 0.001) the formalin-induced nociception in both phases. CP inhibited (p<0.05, 0.01, and 0.001) the development of mechanical hyperalgesia. CP was able to decrease the leukocyte recruitment (p<0.001) and the amount of TNF-α (p<0.001), IL-1ß (p<0.05), and protein leakage (p<0.01) into the pleural cavity. In addition, the paw edema was inhibited by CP (p<0.05, 0.01, and 0.001). The CP attenuates nociception, mechanical hyperalgesia, and inflammation, through an inhibition of cytokines.
Asunto(s)
Monoterpenos/síntesis química , Monoterpenos/farmacología , Propionatos/síntesis química , Propionatos/farmacología , Animales , Cimenos , Relación Dosis-Respuesta a Droga , Edema/tratamiento farmacológico , Edema/patología , Masculino , Ratones , Monoterpenos/uso terapéutico , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Dolor/tratamiento farmacológico , Dolor/patología , Propionatos/uso terapéutico , Distribución AleatoriaRESUMEN
Previous studies on the genus Clusia have shown anti-inflammatory and antiproliferative effects of the leaf extracts, but its antinociceptive activity has never been characterized. In the present study, the antinociceptive activity of the hexane extract of the leaves of Clusia nemorosa G. Mey, called HECn, was examined. Antinociceptive activity was evaluated using acetic acid-induced writhing, formalin, and hot-plate tests. All experiments were carried out on male Swiss mice. The extract (1-400 mg·kg(-1)), given by intraperitoneal route (i.p.) 1 h prior to testing, produced a dose-dependent inhibition on the number of abdominal writhings, with an ID50 of 62 mg·kg(-1). In addition, HECn was able to prevent the visceral pain induced by acetic acid in mice for at least 2 h. In the formalin test, HECn had no effect in the first phase, but produced an analgesic effect on the second phase with the inhibition of licking time. The HECn did not show a significant analgesic effect in the hot plate test. Pretreatment with yohimbine attenuated the antinociceptive effect induced by HECn in the writhing test. However, naloxone, atropine, or haloperidol did not affect antinociception induced by HECn in the writhing test. Together, these results indicate that the extract from the leaves of Clusia nemorosa produces antinociception in models of chemical pain through mechanisms that suggest participation of the adrenergic systems pathway.
Asunto(s)
Adrenérgicos/administración & dosificación , Analgésicos/administración & dosificación , Clusia/química , Dolor/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Animales , Humanos , Masculino , Ratones , Nocicepción/efectos de los fármacos , Dolor/psicología , Fitoterapia , Hojas de la Planta/químicaRESUMEN
Sabicea species are used in the Amazon for treatment of fever and malaria, which suggests that its chemical constituents may have some effect on pain and inflammation. Phytochemical analysis of the hexane fraction obtained from the crude ethanol extract from Sabicea grisea var. grisea Cham. & Schltdl (Rubiaceae), an endemic plant in Brazil, resulted in the isolation of octacosanol. This study investigated the antinociceptive and anti-inflammatory effects of the octacosanol in different experimental models. The crude ethanolic extract and hexane fraction obtained from the leaves of S. grisea produced an inhibition of acetic acid-induced pain. Moreover, octacosanol isolated from the hexane fraction produced a significant inhibition of pain response elicited by acetic acid. Pre-treatment with yohimbine, an alpha 2-adrenergic receptor antagonist, notably reversed the antinociceptive activity induced by octacosanol in the abdominal constriction test. Furthermore, mice treated with octacosanol did not exhibit any behavioral alteration during the hot plate and rota-rod tests, indicating non-participation of the supraspinal components in the modulation of pain by octacosanol with no motor abnormality. In the formalin test, octacosanol did not inhibit the licking time in first phase (neurogenic pain), but significantly inhibited the licking time in second phase (inflammatory pain) of mice. The anti-inflammatory effect of octacosanol was evaluated using carrageenan-induced pleurisy. The octacosanol significantly reduced the total leukocyte count and neutrophils influx, as well as TNF-α levels in the carrageenan-induced pleurisy. This study revealed that the mechanism responsible for the antinociceptive and anti-inflammatory effects of the octacosanol appears to be partly associated with an inhibition of alpha 2-adrenergic transmission and an inhibition of pathways dependent on pro-inflammatory cytokines. Finally, these results demonstrated that the octacosanol from the leaves of S. grisea possesses antinociceptive and anti-inflammatory activities, which could be of relevance for the pharmacological control of pain and inflammatory processes.
Asunto(s)
Analgésicos , Antiinflamatorios , Alcoholes Grasos , Neuralgia/tratamiento farmacológico , Dolor Nociceptivo/tratamiento farmacológico , Hojas de la Planta/química , Ácido Acético/toxicidad , Antagonistas de Receptores Adrenérgicos alfa 2/efectos adversos , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/aislamiento & purificación , Alcoholes Grasos/farmacología , Masculino , Ratones , Neuralgia/inducido químicamente , Neuralgia/patología , Neuralgia/fisiopatología , Dolor Nociceptivo/inducido químicamente , Dolor Nociceptivo/patología , Dolor Nociceptivo/fisiopatología , Extractos Vegetales , Yohimbina/efectos adversos , Yohimbina/farmacologíaRESUMEN
The present study was carried out to investigate the anti-inflammatory effect of the hexane extract of the leaves from Clusia nemorosa G. Mey, called HECn, using carrageenan-induced mice pleurisy and cotton pellet-induced mice granuloma. Additionally, the ability of HECn to affect both neutrophil migration as viability was investigated by use of the Boyden chamber assay and flow cytometry, respectively. The HECn significantly inhibited exudation, total leukocytes and neutrophils influx, as well as TNFα levels in carrageenan-induced pleurisy. However, the extract not suppressed the granulomatous tissue formation in the cotton pellet-induced granuloma test. Experiments performed in vitro revealed that HECn on human neutrophils inhibited a dose-dependent manner the CXCL1-induced neutrophil chemotaxis. Furthermore, HECn also inhibited the chemoattraction of human neutrophils induced by formyl-methionyl-leucyl-phenylalanine (fMLP), leukotriene B4 (LTB4) and platelet activating factor (PAF) in a Boyden chamber. However, this same treatment not was able to induce apoptosis. The results obtained in this study showed that the extract from leaves of C. nemorosa possess a potent inhibitory activity in acute model of inflammation, being the effects mediated, in part, by inhibition of neutrophil responsiveness. These results indicate that C. nemorosa could be a good source for anti-inflammatory compounds.
Asunto(s)
Antiinflamatorios/farmacología , Clusia , Granuloma/tratamiento farmacológico , Extractos Vegetales/farmacología , Pleuresia/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carragenina , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Fibra de Algodón , Granuloma/inducido químicamente , Granuloma/inmunología , Humanos , Ratones , Neutrófilos/inmunología , Neutrófilos/fisiología , Fitoterapia , Hojas de la Planta , Pleuresia/inducido químicamente , Pleuresia/inmunología , Factor de Necrosis Tumoral alfa/biosíntesisRESUMEN
The present study aimed to elucidate the antinociceptive and anti-inflammatory properties of the methanol extract from the mycelium of the endophytic fungus Rhizoctonia sp. (MEMRh) in mice. The antinociceptive activity was assessed using the abdominal constriction, hot plate, and formalin tests. The anti-inflammatory activity was assessed using a murine model of paw edema. Intraperitoneal administration of MEMRh (0.1, 1, 10 and 100 mg/kg, i.p.) produced an inhibition of acetic acid-induced writhing in mice for at least 8 h. In addition, all doses tested of the methanol extract were able to prevent thermal nociception in the hot-plate test. Furthermore, treatment with MEMRh (10 mg/kg, i.p.) inhibited both the early and late phases of formalin-induced nociception. This antinociceptive effect exhibited by MEMRh in the formalin test was reversed by the systemic administration of naloxone. MEMRh produced inhibition in a carrageenan-induced edema model at a dose of 10 mg/kg. The same extract also displayed significant activity against a histamine- or PGE(2)-induced edema model. The experimental data demonstrated that MEMRh showed remarkable anti-inflammatory and antinociceptive activities. Further studies are warranted to define and isolate the active anti-inflammatory and antinociceptive components from this endophytic fungus, which may yield effective agents for the treatment of inflammatory disorders.