RESUMEN
Parkinson's disease (PD) is a multifactorial disease, with genetic and environmental factors contributing to the disease onset. Classically, PD is a movement disorder characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and intraneuronal aggregates mainly constituted of the protein α-synuclein. However, PD patients also display non-motor symptoms, including depression, which have been linked to functional abnormalities of non-dopaminergic neurons, including serotonergic and noradrenergic ones. Thus, through this comprehensive literature review, we shed light on the noradrenergic and serotonergic impairment linked to depression in PD, focusing on the putative involvement of inflammatory mechanisms.
RESUMEN
HIGHLIGHTS: Tumor progression and anxiety and depression behaviors under evaluation during propranolol use in murine melanoma. Evaluation of anxiety and depression through forced swimming behavior tests, elevated plus maze, open field and marble-burying test.
Abstract Melanoma, a severe form of skin cancer, has rapid growth and has been prone to behavioral disorders that worsen the patient's prognosis and survival. Among these psychic disorders can occur anxiety and depression, in addition to cognitive deficit. In order to try to elucidate the neuropsychological disorders that occur in melanoma, the objective of this study was to evaluate propranolol in tumor progression and in anxious and depressive behaviors in an animal model with melanoma. B16F10 cells were injected into C57BL6/J mice subsequently treated with propranolol at doses of 1.43 mg/kg and 5.71 mg/kg and evaluated for tumor growth and in open field, forced swimming, elevated plus maze and marble-burying test at initial time and consolidated tumor. As a result, the group treated with propranolol at a dose of 5.71 mg/kg showed less tumor growth. In the initial behavioral tests, melanoma altered the animals' motility, but anxious behavior was not detected. Depressive behavior was detected in the forced swimming test in the two doses of the treatment used. When taking time with consolidated tumor, there was a reduction in the locomotor activity of the animals in the open field test, impairing the analysis of anxious and depressive behavior. The data suggest that there was a reduction in the progression of melanoma, there was no anxious behavior in the animals, only the depressive behavior and the use of propranolol did not improve the evaluated behavior.
Asunto(s)
Animales , Masculino , Ratones , Ansiedad/psicología , Propranolol/administración & dosificación , Neoplasias Cutáneas/psicología , Melanoma Experimental/psicología , Depresión/psicología , Natación , Aprendizaje por Laberinto , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
Besides being better known for causing motor impairments, Parkinson's disease (PD) can also cause many nonmotor symptoms, like depression and anxiety, which can cause significant loss of life quality and may not respond to regular drugs treatment. In this review, we discuss the depression in PD, based on data from studies in humans and rodents. Depression frequency seems higher in PD patients than in general population, despite high variation in data due to diagnosis disparities. Development of depression in PD seems more likely to be caused by the nigrostriatal pathway degeneration than as a consequence of the awareness of disease prognostic, and it seems to be related to dopaminergic, noradrenergic, and serotoninergic synapses deficits. The dopaminergic role could be more significant, since it can modulate the release of the others, and its depletion is progressive, due to the degenerative feature of PD. Highly regarded in major depression, serotonin can be depleted in rats after nigrostriatal damage, but data from human patients are more conflicting. Animal studies can help in understanding the neurobiological mechanisms of depression in PD and the pursuit for more effective drugs for its treatment, but they lack the complexity of the disease progression, especially the nondopaminergic degeneration.
RESUMEN
Neuropsychiatric symptoms and pain are among the most common nonmotor symptoms of Parkinson's disease (PD). The correlation between pain and PD has been recognized since its classic descriptions. Pain occurs in about 60% of PD patients, two to three times more frequent in this population than in age matched healthy individuals. It is an early and potentially disabling symptom that can precede motor symptoms by several years. The lower back and lower extremities are the most commonly affected areas. The most used classification for pain in PD defines musculoskeletal, dystonic, central, or neuropathic/radicular forms. Its different clinical characteristics, variable relationship with motor symptoms, and inconsistent response to dopaminergic drugs suggest that the mechanism underlying pain in PD is complex and multifaceted, involving the peripheral nervous system, generation and amplification of pain by motor symptoms, and neurodegeneration of areas related to pain modulation. Although pain in DP is common and a significant source of disability, its clinical characteristics, pathophysiology, classification, and management remain to be defined.
RESUMEN
Background. Orthostatic hypotension (OH) is an important nonmotor manifestation of Parkinson's disease (PD). Changes in cerebrovascular reactivity may contribute to this manifestation and can be monitored using transcranial Doppler. Objective. To identify possible changes in cerebrovascular reactivity in patients with OH. Methods. Twenty-two individuals were selected and divided into three groups: with and without OH and controls. Transcranial Doppler was used to assess basal mean blood flow velocity, postapnea mean blood flow velocity, percentage increase in mean blood flow velocity, and cerebrovascular reactivity as measured by the breath-holding index. Results. PD patients had lower values of basal velocity (p = 0.019), postapnea velocity (p = 0.0015), percentage increase in velocity (p = 0.039), and breath-holding index (p = 0.04) than the controls. Patients with OH had higher values of basal velocity (p = 0.09) and postapnea velocity (p = 0.19) but lower values of percentage increase in velocity (p = 0.22) and breath-holding index (p = 0.32) than patients without OH. Conclusions. PD patients present with abnormalities in a compensatory mechanism that regulates cerebral blood flow. OH could be an indicator of these abnormalities.
RESUMEN
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the slow and progressive death of dopaminergic neurons in the (substantia nigra pars compact). Hypericum perforatum (H. perforatum) is a plant widely used as an antidepressant, that also presents antioxidant and anti-inflammatory properties. We evaluated the effects of H. perforatum on the turning behavior of rats submitted to a unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle as an animal model of PD. The animals were treated with H. perforatum (100, 200, or 400 mg/kg, v.o.) for 35 consecutive days (from the 28th day before surgery to the 7th day after). The turning behavior was evaluated at 7, 14 and 21 days after the surgery, and the turnings were counted as contralateral or ipsilateral to the lesion side. All tested doses significantly reduced the number of contralateral turns in all days of evaluation, suggesting a neuroprotective effect. However, they were not able to prevent the 6-OHDA-induced decrease of tyrosine hydroxylase expression in the lesioned striatum. We propose that H. perforatum may counteract the overexpression of dopamine receptors on the lesioned striatum as a possible mechanism for this effect. The present findings provide new evidence that H. perforatum may represent a promising therapeutic tool for PD.
A Doença de Parkinson é uma doença neurodegenerativa relacionada à idade, caracterizada pela morte lenta e progressiva de neurônios dopaminérgicos da substância negra pars compacta. O Hypericum perforatum (H. perforatum) é um fitoterápico utilizado como antidepressivo, apresentando propriedades antioxidantes, anti-inflamatórias e nootrópicas. Neste trabalho, avaliaram-se os efeitos do tratamento com H. perforatum no comportamento rotatório de ratos no modelo da doença de Parkinson induzido pela administração unilateral de 6-OHDA no feixe prosencefálico medial. Ratos Wistar machos foram tratados com H. perforatum (100, 200 ou 400 mg/kg, v.o.) por 35 dias (do 28º dia antes até o 7º dia após a lesão). As rotações ipsilaterais e contralaterais à lesão foram registradas no 7º, 14º e 21º dias após a cirurgia. As três doses de H. perforatum utilizadas reduziram o número de rotações contralaterais, indicando um possível efeito neuroprotetor da planta. Porém, o H. perforatum não impediu a redução na expressão da enzima tirosina hidroxilase no estriado lesionado, quantificada por Western blot. Propomos que o H. perforatum possa bloquear o aumento da expressão dos receptores dopaminérgicos no estriado lesionado com 6-OHDA. Entretanto, estudos adicionais são necessários para identificar o mecanismo exato pelo qual o H. perforatum reduziu o número de rotações contralaterais. Os resultados do presente estudo sugerem o H. perforatum como um potencial agente terapêutico para a doença de Parkinson.
Asunto(s)
Enfermedad de Parkinson/diagnóstico , Hypericum , Oxidopamina/análisis , Fármacos Neuroprotectores , FitoterapiaRESUMEN
Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson's disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did not cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [(3)H]raclopride to D2 receptors, while medium-size lesions reduced the binding of [(3)H]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity.
Asunto(s)
Dopamina/metabolismo , Lateralidad Funcional/fisiología , Actividad Motora/fisiología , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/metabolismo , Análisis de Varianza , Animales , Apomorfina/farmacología , Daño Encefálico Crónico/inducido químicamente , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Lateralidad Funcional/efectos de los fármacos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Masculino , Actividad Motora/efectos de los fármacos , Oxidopamina , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Ratas , Ratas Wistar , Rotación , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas , Sustancia Negra/patologíaRESUMEN
The aim of this study was to investigate the effects of intrastriatal injection of hypoxanthine, a metabolite accumulated in Lesch-Nyhan disease, on rats' performance in the Morris water maze tasks, along with the monoamine content in striatum of rats. Male adult Wistar rats were divided in two groups: (1) saline-injected and (2) hypoxanthine-injected group. Seven days after solutions infusion, animals were trained in the Morris Water Maze or were sacrificed for evaluation of the striatal monoamine content. Results show that hypoxanthine administration caused impairment on spatial navigation in the acquisition phase in reference memory task in the Morris Water Maze, as well as in the latency to cross over the platform location in probe trial, when compared to the saline group (control). Hypoxanthine also altered rat performance in the working memory. Although striatal dopamine metabolites content did not change, treated animals showed a reduction of tissue levels of serotonin (5-HT) and 5- hydroxyl-indoleacetic acid (5-HIAA). These results show that intra-striatal hypoxanthine administration provoked impairment of spatial learning/memory in rats without affecting striatal dopaminergic system, although serotonergic pathways seem to have been affected.
Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Hipoxantina/toxicidad , Síndrome de Lesch-Nyhan/fisiopatología , Memoria/efectos de los fármacos , Serotonina/metabolismo , Percepción Espacial/efectos de los fármacos , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Ácido Homovanílico/metabolismo , Ácido Hidroxiindolacético/metabolismo , Síndrome de Lesch-Nyhan/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/fisiología , Microinyecciones , Ratas , Ratas Wistar , Percepción Espacial/fisiologíaRESUMEN
This study compares histological, neurochemical, behavioral, motor and cognitive alterations as well as mortality of two models of Parkinson's disease in which 100 microg 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6 microg 6-hydroxydopamine (6-OHDA) was bilaterally infused into the central region of the substantia nigra, compact part, of adult male Wistar rats. Both neurotoxins caused a significant loss of nigral tyrosine hydroxylase-immunostained cells and striatal dopamine depletion, but 6-OHDA caused more widespread and intense cell loss, more intense body weight loss and more mortality than MPTP. Both 6-OHDA- and MPTP-lesioned rats presented similar deficits in performing a working memory and a cued version of the Morris water maze task and few exploratory/motor alterations in the open field and catalepsy tests. However, rats presented a significant and transitory increase in locomotor activity after the MPTP lesion and a hypolocomotor behavior tended to be present after the 6-OHDA lesion. The picture of mild motor effects and robust impairment of habit learning and spatial working memory observed in MPTP-lesioned rats models the early phase of Parkinson's disease.
Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Química Encefálica/efectos de los fármacos , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Oxidopamina , Trastornos Parkinsonianos , Adrenérgicos , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Masculino , Memoria/fisiología , Actividad Motora/fisiología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Ratas , Ratas Wistar , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiopatología , Factores de TiempoRESUMEN
Adult male Wistar rats with a substantia nigra pars compacta (SNc) lesion induced by intranigral administration of 1 micromol 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were used as a model of early phase Parkinson's disease (PD). This lesion caused a partial depletion of striatal dopamine (DA). The animals were submitted to a spatial working memory version of the water maze task in which they had to find a hidden (submersed) platform using online-maintained information that the platform remains in the same place during four consecutive trials, but that it is moved to another place every training day. Left, but not right SNc-lesioned rats were impaired in finding the platform in the second trial. This result suggests that the left SNc plays a key role in spatial working memory. Control experiments ruled out the possibility that motor impairment, sensory neglect, and/or impairment in the mental representation of the contralateral spatial environment had affected performance of the SNc-lesioned rats.