Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 103(6): 5090-5101, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32229110

RESUMEN

The objective of this study was to evaluate the effects of a commercially available fermentation by-product in a diet containing adequate rumen-degradable protein (RDP) on milk performance, intake, and total-tract nutrient digestion in lactating dairy cattle. Primiparous (n = 48) and multiparous (n = 144) lactating dairy cattle were stratified by milk production and randomly allocated into 12 pens containing 4 primiparous and 12 multiparous animals each. Cattle averaged 118 d in milk and 712 kg of body weight at trial start. Treatment diets, on a dry matter (DM) basis, consisted of 42% corn silage, 13% alfalfa hay and silage, 20% grain corn, and 25% protein premix containing either soybean meal, wheat middlings, and urea (SBM+U), soybean meal and fermentation by-product (SBM+F), or soybean meal and rumen-protected soybean meal (RP-SBM). All 3 diets provided a similar level (DM basis) of neutral detergent fiber analyzed using α-amylase and sodium sulfite and corrected for ash content (31%), crude protein (CP, 14.9%), starch (26%), and metabolizable energy (2.7 Mcal/kg), and differed in sources of RDP. The trial consisted of a 2-wk adaptation and covariate period during which all cows were fed the RP-SBM diet and covariate measurements were taken. Pens were then randomly allocated to treatments, and weekly measurements of milk production, intake, body weight, and condition score were taken for 10 wk. All data were analyzed using the Proc Mixed procedure in SAS (SAS Institute Inc., Cary, NC). Increased DM intake was observed for cows fed SBM+F compared with cows fed SBM+U and RP-SBM (28.3 vs. 26.9 and 26.7 kg/d, respectively). Cows fed SBM+F produced more energy-corrected milk (45.3 kg/d) compared with cows fed SBM+U and RP-SBM (43.6 and 43.7 kg/d, respectively). Milk protein yield was also increased in cows fed SBM+F. No differences were observed with body weight or condition score gain throughout the trial. Apparent total-tract digestibility of fiber was decreased in cows fed SBM+F, likely as a result of increased intake. Responses are consistent with previous research in our laboratory that demonstrated a decrease in ruminal CP degradation, leading to an increase in metabolizable protein supply in the small intestine. The fermentation by-product might be useful in diets containing adequate amounts of RDP from soybean meal or alfalfa. The results from this experiment demonstrate beneficial milk performance responses to fermentation by-product when fed with a source of RDP.


Asunto(s)
Bovinos/crecimiento & desarrollo , Digestión , Leche , Rumen/metabolismo , Animales , Bovinos/metabolismo , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Femenino , Fermentación , Lactancia , Medicago sativa , Proteínas de la Leche/metabolismo , Nutrientes , Ensilaje , Glycine max , Almidón/metabolismo , Triticum , Urea , Zea mays
2.
J Dairy Sci ; 102(4): 3023-3035, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30799114

RESUMEN

The objective of this study was to evaluate the effects of a fermentation byproduct on rumen fermentation and microbial yield in high producing lactating dairy cattle. Eight ruminally cannulated multiparous Holstein cows averaging (mean ± standard deviation) 60 ± 10 d in milk and 637 ± 38 kg of body weight were assigned to 1 of 2 treatment sequences in a switchback design. Treatment diets contained (dry matter basis) 44% corn silage, 13% alfalfa silage, 12% ground corn, and 31% premix containing either a control mix of urea and wheat middlings (CON) or a commercial fermentation byproduct meal (Fermenten, Arm and Hammer Animal Nutrition, Princeton, NJ) at 3% diet inclusion rate (EXP). Diets were formulated to be isonitrogenous and isocaloric, with similar levels of neutral detergent fiber and starch. The trial consisted of three 28-d experimental periods, where each period consisted of 21 d of diet adaptation and 7 d of data and sample collection. Omasal nutrient flows were determined using a triple-marker technique and double-labeled 15N15N-urea. The EXP diet provided 18 g/d more nonammonia N versus the CON diet, representing 3.0% of total N intake. Energy-corrected milk yield (41.7 and 43.1 kg/d for CON and EXP, respectively), milk fat, and protein yield and content did not differ between treatments. Total dry matter intake was similar between treatments (25.5 and 26.4 kg/d for CON and EXP, respectively). Ammonia N concentration and pool size in the rumen was greater in cows fed the EXP diet. No differences were observed in rumen or total-tract dry matter, organic matter, or neutral detergent fiber digestibility. Ruminal degradation of feed N was 15% lower in cows fed EXP diets, resulting in differences in omasal N flows. Results demonstrated the fermentation byproduct meal had a sparing effect on degradable feed protein, but did not increase microbial N flow from the rumen.


Asunto(s)
Dieta/veterinaria , Lactancia , Leche , Omaso/metabolismo , Rumen/metabolismo , Rumiación Digestiva , Urea/farmacología , Amoníaco/metabolismo , Alimentación Animal , Animales , Peso Corporal , Bovinos , Fibras de la Dieta/metabolismo , Femenino , Fermentación , Medicago sativa , Nutrientes , Ensilaje , Almidón/metabolismo , Zea mays
3.
J Dairy Sci ; 102(4): 3036-3052, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30660423

RESUMEN

The objective of this study was to evaluate the effect of a fermentation by-product on rumen function, microbial yield, and composition and flows of nutrients from the rumen in high-producing lactating dairy cattle. Eight ruminally cannulated multiparous Holstein cows averaging (mean ± standard deviation) 60 ± 10 d in milk and 637 ± 38 kg of body weight were randomly assigned to 1 of 2 treatment sequences in a switchback design. Treatment diets contained (dry matter basis) 44% corn silage, 13% alfalfa silage, 12% ground corn, and 31% protein premix, containing either a control mix of urea and wheat middlings (CON) or a commercial fermentation by-product meal (Fermenten, Arm and Hammer Animal Nutrition, Princeton, NJ) at 3% diet inclusion rate (EXP). The trial consisted of three 28-d experimental periods, where each period consisted of 21 d of diet adaptation and 7 d of data and sample collection. A triple-marker technique and double-labeled 15N15N-urea were used to were used to measure protozoal, bacterial, and nonmicrobial omasal flow of AA. Rumen pool sizes and omasal flows were used to determine digestion parameters, including fractional rates of carbohydrate digestion, microbial growth, and yield of microbial biomass per gram of degraded substrate. Fermentation by-product inclusion in EXP diets increased microbial N and amino acid N content in microbes relative to microbes from CON cows fed the urea control. Microbial AA profile did not differ between diets. Daily omasal flows of AA were increased in EXP cows as a result of decreased degradation of feed protein. The inclusion of the fermentation by-product increased nonmicrobial AA flow in cows fed EXP versus CON. Average protozoal contribution to microbial N flow was 16.8%, yet protozoa accounted for 21% of the microbial AA flow, with a range of 8 to 46% for individual AA. Cows in this study maintained an average rumen pool size of 320 g of microbial N, and bacterial and protozoal pools were estimated at 4 different theoretical levels of selective protozoa retention. Fractional growth rate of all microbes was estimated to be 0.069 h-1, with a yield of 0.44 g of microbial biomass per gram of carbohydrate degraded. Results indicated that fermentation by-product can increase omasal flow of AA while maintaining adequate rumen N available for microbial growth and protein synthesis. Simulations from a developmental version of the Cornell Net Carbohydrate and Protein System indicated strong agreement between predicted and observed values, with some areas key for improvement in AA flow and bacterial versus protozoal N partitioning.


Asunto(s)
Aminoácidos/metabolismo , Bovinos/metabolismo , Dieta/veterinaria , Fermentación , Nitrógeno/metabolismo , Omaso/metabolismo , Rumiación Digestiva , Animales , Bacterias/metabolismo , Femenino , Cinética , Lactancia , Medicago sativa , Leche , Distribución Aleatoria , Rumen , Ensilaje , Urea/metabolismo , Zea mays
4.
J Dairy Sci ; 100(9): 7211-7226, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28668529

RESUMEN

Microbial samples from 4 independent experiments in lactating dairy cattle were obtained and analyzed for nutrient composition, AA digestibility, and AA profile after multiple hydrolysis times ranging from 2 to 168 h. Similar bacterial and protozoal isolation techniques were used for all isolations. Omasal bacteria and protozoa samples were analyzed for AA digestibility using a new in vitro technique. Multiple time point hydrolysis and least squares nonlinear regression were used to determine the AA content of omasal bacteria and protozoa, and equivalency comparisons were made against single time point hydrolysis. Formalin was used in 1 experiment, which negatively affected AA digestibility and likely limited the complete release of AA during acid hydrolysis. The mean AA digestibility was 87.8 and 81.6% for non-formalin-treated bacteria and protozoa, respectively. Preservation of microbe samples in formalin likely decreased recovery of several individual AA. Results from the multiple time point hydrolysis indicated that Ile, Val, and Met hydrolyzed at a slower rate compared with other essential AA. Singe time point hydrolysis was found to be nonequivalent to multiple time point hydrolysis when considering biologically important changes in estimated microbial AA profiles. Several AA, including Met, Ile, and Val, were underpredicted using AA determination after a single 24-h hydrolysis. Models for predicting postruminal supply of AA might need to consider potential bias present in postruminal AA flow literature when AA determinations are performed after single time point hydrolysis and when using formalin as a preservative for microbial samples.


Asunto(s)
Aminoácidos/análisis , Digestión , Rumen/microbiología , Rumen/parasitología , Animales , Bacterias/aislamiento & purificación , Femenino , Hidrólisis , Lactancia , Parásitos/aislamiento & purificación , Rumen/metabolismo , Factores de Tiempo
5.
Transl Anim Sci ; 1(4): 559-569, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32704678

RESUMEN

In ruminants, excess dietary sulfur can be associated with a reduction in DM intake, poor feedlot performance and sulfur-associated polioencephalomalacia. Bismuth subsalicylate (BSS) has been shown to decrease hydrogen sulfide in vitro. The objective of this experiment was to evaluate effects of BSS inclusion (0 or 0.5% of diet DM) and dietary sulfur (0.21 or 0.42% of diet DM) on microbial fermentation in continuous culture. Treatments were arranged in a 2 × 2 factorial design. Eight dual-flow continuous culture fermenters were used during 2 consecutive 10-d periods consisting of 7 d for stabilization followed by 3 d of sampling. A pelleted feedlot diet containing 39% dry rolled corn, 32% earlage, 21% wet distillers grains, 3.2% corn silage, 1.5% soybean meal, 0.6% urea and 2.7% mineral premix (DM basis) was provided as substrate for microbes at a rate of 75 g of DM × fermenter-1 × d-1. Effluents from sampling days were composited by fermenter within period, resulting in 4 replicates/treatment. Bismuth subsalicylate inclusion decreased (P < 0.01) true OM digestion, while no effects were observed for NDF and ADF digestion. Total VFA concentrations, molar proportions of acetic, propionic, and branched-chained VFA decreased (P < 0.01) with BSS addition. The ratio of acetic to propionic acid and the molar proportion of butyric acid increased (P < 0.01) with BSS addition. In regard to nitrogen metabolism, BSS increased NH3-N concentration, NH3-N and dietary-N flows (P < 0.01), and decreased non-NH3-N flow, microbial-N flow, CP degradation, and efficiency of microbial protein synthesis (P < 0.01). Inclusion of BSS increased mean, minimum, and maximum fermentation pH (P < 0.01). Amount of dietary sulfur and BSS inclusion influenced flows of amino acids and fatty acids from fermenters. Influences on fatty acid biohydrogenation and amino acid flows demonstrated an overall suppression of microbial fermentation. Results from this experiment indicate that BSS inclusion at 0.5% of diet DM has detrimental effects on in vitro rumen fermentation in continuous culture.

6.
J Anim Sci ; 93(11): 5346-54, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26641054

RESUMEN

The objective of this study was to determine if a sulfur binder, bismuth subsalicylate (BSS), alone or combined with monensin (MON) could decrease the production of HS by rumen microbes. In Exp. 1, two 24-h batch culture incubations were conducted using a substrate consisting of 50% corn, 40% distillers grains, 9.75% hay, and 0.25% mineral premix, on a DM basis. Five treatments including BSS concentrations of 0% (control), 0.5%, 1%, 2%, and 4% of DM were assigned in 5 replicates to 120-mL serum bottles containing rumen fluid, buffer, and 0.5 g of dietary substrate. Addition of 2% and 4% BSS decreased ( < 0.05) gas production, whereas all concentrations of BSS reduced ( < 0.05) HS production by 18%, 24%, 82%, and 99% for 0.5%, 1%, 2%, and 4% BSS, respectively. Final pH increased ( < 0.05) with 2% and 4% BSS treatments. At 4% of DM, BSS decreased ( < 0.05) total VFA concentration (m) and propionate (mol/100 mol) but increased acetate (mol/100 mol) and acetate to propionate ratio. Concentration of branched-chain VFA increased ( < 0.05) with the addition of 0.5% BSS, compared with the control. On the basis of these results, addition of BSS (1% of DM) and MON (5 mg/kg) were used to assess their effects on metabolism and HS release by rumen microbes in 8 dual flow continuous culture fermenters during two 10-d periods (Exp. 2). Treatments were arranged in a 2 × 2 factorial design. Substrate similar to that used in Exp. 1 was provided at 75 g DM/fermenter daily. Headspace HS concentration was reduced ( < 0.05) by 99% with BSS treatment but was not affected ( = 0.21) by MON. An overall increase ( < 0.05) in fermentation pH was found following addition of BSS. Addition of BSS increased ( < 0.05) digestion of NDF and ADF but decreased ( < 0.05) nonfiber carbohydrate digestion and total VFA concentration. Acetate and propionate (mol/100 mol) increased ( < 0.05) with BSS, whereas butyrate (mol/100 mol) and branched-chain VFA (m) decreased ( < 0.05). Addition of BSS increased ( < 0.05) NH-N concentration and NH-N outflow but decreased ( < 0.05) microbial N outflow. Results from this study showed no response to monensin addition, but BSS markedly reduced HS production and altered microbial fermentation during in vitro rumen fluid incubations.


Asunto(s)
Alimentación Animal/análisis , Bismuto/farmacología , Bovinos , Dieta/veterinaria , Sulfuro de Hidrógeno/metabolismo , Monensina/farmacología , Compuestos Organometálicos/farmacología , Salicilatos/farmacología , Animales , Bismuto/administración & dosificación , Digestión/fisiología , Fermentación , Hidrógeno , Monensina/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Rumen/microbiología , Salicilatos/administración & dosificación
7.
J Dairy Sci ; 97(3): 1611-22, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24377801

RESUMEN

Rumensin (monensin; Elanco Animal Health, Greenfield, IN) has been shown to reduce ammonia production and microbial populations in vitro; thus, it would be assumed to reduce ruminal ammonia production and subsequent urea production and consequently affect urea recycling. The objective of this experiment was to determine the effects of 2 levels of dietary crude protein (CP) and 2 levels of starch, with and without Rumensin on urea-N recycling in lactating dairy cattle. Twelve lactating Holstein dairy cows (107 ± 21 d in milk, 647 kg ± 37 kg of body weight) were fed diets characterized as having high (16.7%) or low (15.3%) CP with or without Rumensin, while dietary starch levels (23 vs. 29%) were varied between 2 feeding periods with at least 7d of adaptation between measurements. Cows assigned to high or low protein and to Rumensin or no Rumensin remained on those treatments to avoid carryover effects. The diets consisted of approximately 40% corn silage, 20% alfalfa hay, and 40% concentrate mix specific to the treatment diets, with 0.5 kg of wheat straw added to the high starch diets to enhance effective fiber intake. The diets were formulated using Cornell Net Carbohydrate and Protein System (version 6.1), and the low-protein diets were formulated to be deficient for rumen ammonia to create conditions that should enhance the demand for urea recycling. The high-protein diets were formulated to be positive for both rumen ammonia and metabolizable protein. Rumen fluid, urine, feces, and milk samples were collected before and after a 72-h continuous jugular infusion of (15)N(15)N-urea. Total urine and feces were collected during the urea infusions for N balance measurements. Milk yield and dry matter intake were improved in cows fed the higher level of dietary CP and by Rumensin. Ruminal ammonia and milk and plasma urea nitrogen concentrations corresponded to dietary CP concentration. As has been shown in vitro, Rumensin reduced rumen ammonia concentration by approximately 23% but did not affect urea entry rate or gastrointestinal entry rate. Urea entry rate averaged approximately 57% of total N intake for cattle with and without Rumensin, and gastrointestinal rate was similar at 43 and 42% of N intake for cattle fed and not fed Rumensin, respectively. The cattle fed the high-protein diet had a 25% increase in urea entry rate and no effect of starch level was observed for any recycling parameters. Contrary to our hypothesis, Rumensin did not alter urea production and recycling.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Monensina/metabolismo , Nitrógeno/metabolismo , Almidón/metabolismo , Alimentación Animal/análisis , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/metabolismo , Suplementos Dietéticos/análisis , Femenino , Lactancia , Monensina/administración & dosificación , Rumen/metabolismo , Almidón/administración & dosificación , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...