Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Life Sci ; 331: 122030, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598977

RESUMEN

AIMS: Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS: We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS: Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE: Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.


Asunto(s)
Fibroblastos , Telómero , Animales , Humanos , Ratones , Cromatina , ADN , Fibroblastos/metabolismo , ARN/genética , ARN/metabolismo , Telómero/genética , Telómero/metabolismo , Factores de Transcripción/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
2.
Nat Med ; 29(1): 95-103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658421

RESUMEN

Artificial intelligence has the potential to revolutionize healthcare, yet clinical trials in neurological diseases continue to rely on subjective, semiquantitative and motivation-dependent endpoints for drug development. To overcome this limitation, we collected a digital readout of whole-body movement behavior of patients with Duchenne muscular dystrophy (DMD) (n = 21) and age-matched controls (n = 17). Movement behavior was assessed while the participant engaged in everyday activities using a 17-sensor bodysuit during three clinical visits over the course of 12 months. We first defined new movement behavioral fingerprints capable of distinguishing DMD from controls. Then, we used machine learning algorithms that combined the behavioral fingerprints to make cross-sectional and longitudinal disease course predictions, which outperformed predictions derived from currently used clinical assessments. Finally, using Bayesian optimization, we constructed a behavioral biomarker, termed the KineDMD ethomic biomarker, which is derived from daily-life behavioral data and whose value progresses with age in an S-shaped sigmoid curve form. The biomarker developed in this study, derived from digital readouts of daily-life movement behavior, can predict disease progression in patients with muscular dystrophy and can potentially track the response to therapy.


Asunto(s)
Distrofia Muscular de Duchenne , Dispositivos Electrónicos Vestibles , Humanos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Actividades Cotidianas , Estudios Transversales , Inteligencia Artificial , Teorema de Bayes , Biomarcadores
3.
Nat Med ; 29(1): 86-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658420

RESUMEN

Friedreich's ataxia (FA) is caused by a variant of the Frataxin (FXN) gene, leading to its downregulation and progressively impaired cardiac and neurological function. Current gold-standard clinical scales use simplistic behavioral assessments, which require 18- to 24-month-long trials to determine if therapies are beneficial. Here we captured full-body movement kinematics from patients with wearable sensors, enabling us to define digital behavioral features based on the data from nine FA patients (six females and three males) and nine age- and sex-matched controls, who performed the 8-m walk (8-MW) test and 9-hole peg test (9 HPT). We used machine learning to combine these features to longitudinally predict the clinical scores of the FA patients, and compared these with two standard clinical assessments, Spinocerebellar Ataxia Functional Index (SCAFI) and Scale for the Assessment and Rating of Ataxia (SARA). The digital behavioral features enabled longitudinal predictions of personal SARA and SCAFI scores 9 months into the future and were 1.7 and 4 times more precise than longitudinal predictions using only SARA and SCAFI scores, respectively. Unlike the two clinical scales, the digital behavioral features accurately predicted FXN gene expression levels for each FA patient in a cross-sectional manner. Our work demonstrates how data-derived wearable biomarkers can track personal disease trajectories and indicates the potential of such biomarkers for substantially reducing the duration or size of clinical trials testing disease-modifying therapies and for enabling behavioral transcriptomics.


Asunto(s)
Ataxia de Friedreich , Ataxias Espinocerebelosas , Dispositivos Electrónicos Vestibles , Masculino , Femenino , Humanos , Ataxia de Friedreich/diagnóstico , Ataxia de Friedreich/genética , Estudios Transversales , Captura de Movimiento , Progresión de la Enfermedad , Aprendizaje Automático , Biomarcadores
4.
Mov Disord ; 38(6): 959-969, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36433650

RESUMEN

BACKGROUND: Optic neuropathy is a near ubiquitous feature of Friedreich's ataxia (FRDA). Previous studies have examined varying aspects of the anterior and posterior visual pathways but none so far have comprehensively evaluated the heterogeneity of degeneration across different areas of the retina, changes to the macula layers and combined these with volumetric MRI studies of the visual cortex and frataxin level. METHODS: We investigated 62 genetically confirmed FRDA patients using an integrated approach as part of an observational cohort study. We included measurement of frataxin protein levels, clinical evaluation of visual and neurological function, optical coherence tomography to determine retinal nerve fibre layer thickness and macular layer volume and volumetric brain MRI. RESULTS: We demonstrate that frataxin level correlates with peripapillary retinal nerve fibre layer thickness and that retinal sectors differ in their degree of degeneration. We also shown that retinal nerve fibre layer is thinner in FRDA patients than controls and that this thinning is influenced by the AAO and GAA1. Furthermore we show that the ganglion cell and inner plexiform layers are affected in FRDA. Our MRI data indicate that there are borderline correlations between retinal layers and areas of the cortex involved in visual processing. CONCLUSION: Our study demonstrates the uneven distribution of the axonopathy in the retinal nerve fibre layer and highlight the relative sparing of the papillomacular bundle and temporal sectors. We show that thinning of the retinal nerve fibre layer is associated with frataxin levels, supporting the use the two biomarkers in future clinical trials design. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia de Friedreich , Enfermedades del Nervio Óptico , Humanos , Vías Visuales/diagnóstico por imagen , Ataxia de Friedreich/genética , Agudeza Visual , Retina/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos
5.
BMJ ; 375: e066288, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732400

RESUMEN

OBJECTIVE: To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease. DESIGN: Cohort study. SETTING: National Health Service, England, including secondary and tertiary care. PARTICIPANTS: 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018. INTERVENTION: Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants. MAIN OUTCOME MEASURE: Definite or probable genetic diagnosis. RESULTS: A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis. CONCLUSION: Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments.


Asunto(s)
Pruebas Genéticas/métodos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Secuenciación Completa del Genoma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Mitocondrial/genética , Femenino , Estudios de Seguimiento , Marcadores Genéticos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Adulto Joven
6.
Mol Psychiatry ; 26(10): 5669-5689, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32132650

RESUMEN

Circulating adiponectin (APN) levels decrease with age and obesity. On the other hand, a reduction in APN levels is associated with neurodegeneration and neuroinflammation. We previously showed that aged adiponectin knockout (APN-/-) mice developed Alzheimer's like pathologies, cerebral insulin resistance, and cognitive impairments. More recently, we also demonstrated that APN deficiency increased Aß-induced microglia activation and neuroinflammatory responses in 5xFAD mice. There is compelling evidence that deregulated insulin activities or cerebral insulin resistance contributes to neuroinflammation and Alzheimer's disease (AD) pathogenesis. Here, we demonstrated that APN levels were reduced in the brain of AD patients and 5xFAD mice. We crossbred 5xFAD mice with APN-/- mice to generate APN-deficient 5xFAD (5xFAD;APN-/-). APN deficiency in 5xFAD mice accelerated amyloid loading, increased cerebral amyloid angiopathy, and reduced insulin-signaling activities. Pharmacokinetics study demonstrated adipoRon (APN receptor agonist) was a blood-brain barrier penetrant. AdipoRon improved neuronal insulin-signaling activities and insulin sensitivity in vitro and in vivo. Chronic adipoRon treatment improved spatial memory functions and significantly rescued neuronal and synaptic loss in 5xFAD and 5xFAD;APN-/- mice. AdipoRon lowered plaque and Aß levels in AD mice. AdipoRon also exerted anti-inflammatory effects by reducing microglial and astrocytes activation as well as suppressing cerebral cytokines levels. The microglial phagocytic activity toward Aß was restored after adipoRon treatment. Our results indicated that adipoRon exerts multiple beneficial effects providing important therapeutic implications. We propose chronic adipoRon administration as a potential treatment for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Administración Oral , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Animales , Disfunción Cognitiva/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Piperidinas/uso terapéutico
7.
Neurol Res Pract ; 1: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33324899

RESUMEN

INTRODUCTION: Currently, no treatment that delays with the progression of Friedreich ataxia is available. In the majority of patients Friedreich ataxia is caused by homozygous pathological expansion of GAA repeats in the first intron of the FXN gene. Nicotinamide acts as a histone deacetylase inhibitor. Dose escalation studies have shown, that short term treatment with dosages of up to 4 g/day increase the expression of FXN mRNA and frataxin protein up to the levels of asymptomatic heterozygous gene carriers. The long-term effects and the effects on clinical endpoints, activities of daily living and quality of life are unknown. METHODS: The aim of the NICOFA study is to investigate the efficacy and safety of nicotinamide for the treatment of Friedreich ataxia over 24 months. An open-label dose adjustment wash-in period with nicotinamide (phase A: weeks 1-4) to the individually highest tolerated dose of 2-4 g nicotinamide/day will be followed by a 2 (nicotinamide group): 1 (placebo group) randomization (phase B: weeks 5-104). In the nicotinamide group, patients will continue with their individually highest tolerated dose between 2 and 4 g/d per os once daily and the placebo group patients will be receiving matching placebo. Safety assessments will consist of monitoring and recording of all adverse events and serious adverse events, regular monitoring of haematology, blood chemistry and urine values, regular measurement of vital signs and the performance of physical examinations including cardiological signs. The primary outcome is the change in the Scale for the Assessment and Rating of Ataxia (SARA) over time as compared with placebo in patients with Friedreich ataxia based on the linear mixed effect model (LMEM) model. Secondary endpoints are measures of quality of life, functional motor and cognitive measures, clinician's and patient's global impression-change scales as well as the up-regulation of the frataxin protein level, safety and survival/death. PERSPECTIVE: The NICOFA study represents one of the first attempts to assess the clinical efficacy of an epigenetic therapeutic intervention for this disease and will provide evidence of possible disease modifying effects of nicotinamide treatment in patients with Friedreich ataxia. TRIAL REGISTRATION: EudraCT-No.: 2017-002163-17, ClinicalTrials.gov NCT03761511.

8.
Nucleic Acids Res ; 45(1): 115-126, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27651453

RESUMEN

Neuroglobin (NGB) is predominantly expressed in the brain and retina. Studies suggest that NGB exerts protective effects to neuronal cells and is implicated in reducing the severity of stroke and Alzheimer's disease. However, little is known about the mechanisms which regulate the cell type-specific expression of the gene. In this study, we hypothesized that distal regulatory elements (DREs) are involved in optimal expression of the NGB gene. By chromosome conformation capture we identified two novel DREs located -70 kb upstream and +100 kb downstream from the NGB gene. ENCODE database showed the presence of DNaseI hypersensitive and transcription factors binding sites in these regions. Further analyses using luciferase reporters and chromatin immunoprecipitation suggested that the -70 kb region upstream of the NGB gene contained a neuronal-specific enhancer and GATA transcription factor binding sites. Knockdown of GATA-2 caused NGB expression to drop dramatically, indicating GATA-2 as an essential transcription factor for the activation of NGB expression. The crucial role of the DRE in NGB expression activation was further confirmed by the drop in NGB level after CRISPR-mediated deletion of the DRE. Taken together, we show that the NGB gene is regulated by a cell type-specific loop formed between its promoter and the novel DRE.


Asunto(s)
Cromosomas Humanos Par 14/química , Factor de Transcripción GATA2/genética , Globinas/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Elementos Reguladores de la Transcripción , Sitios de Unión , Sistemas CRISPR-Cas , Línea Celular Tumoral , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Factor de Transcripción GATA2/metabolismo , Edición Génica , Regulación de la Expresión Génica , Genes Reporteros , Globinas/antagonistas & inhibidores , Globinas/metabolismo , Células HeLa , Humanos , Células K562 , Luciferasas/genética , Luciferasas/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Neuronas/citología , Especificidad de Órganos , Unión Proteica , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
9.
PLoS One ; 11(11): e0165873, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806100

RESUMEN

Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres.


Asunto(s)
Centrómero/química , Proteínas Cromosómicas no Histona/metabolismo , ADN Satélite/genética , Leupeptinas/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Acetilación , Animales , Centrómero/efectos de los fármacos , Centrómero/genética , Cromatina/química , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , Inestabilidad Cromosómica , ADN Satélite/efectos de los fármacos , Histonas/metabolismo , Hibridación Fluorescente in Situ , Ratones , Células 3T3 NIH , Transcripción Genética/efectos de los fármacos
10.
Mol Cell ; 60(4): 611-25, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26549683

RESUMEN

The integrity of chromatin, which provides a dynamic template for all DNA-related processes in eukaryotes, is maintained through replication-dependent and -independent assembly pathways. To address the role of histone deposition in the absence of DNA replication, we deleted the H3.3 chaperone Hira in developing mouse oocytes. We show that chromatin of non-replicative developing oocytes is dynamic and that lack of continuous H3.3/H4 deposition alters chromatin structure, resulting in increased DNase I sensitivity, the accumulation of DNA damage, and a severe fertility phenotype. On the molecular level, abnormal chromatin structure leads to a dramatic decrease in the dynamic range of gene expression, the appearance of spurious transcripts, and inefficient de novo DNA methylation. Our study thus unequivocally shows the importance of continuous histone replacement and chromatin homeostasis for transcriptional regulation and normal developmental progression in a non-replicative system in vivo.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Oogénesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Metilación de ADN , Femenino , Fertilización , Regulación de la Expresión Génica , Ratones , Oocitos/metabolismo , Transcripción Genética
11.
Front Neurol ; 6: 262, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26733936

RESUMEN

The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.

12.
Lancet ; 384(9942): 504-13, 2014 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-24794816

RESUMEN

BACKGROUND: Friedreich's ataxia is a progressive degenerative disorder caused by deficiency of the frataxin protein. Expanded GAA repeats within intron 1 of the frataxin (FXN) gene lead to its heterochromatinisation and transcriptional silencing. Preclinical studies have shown that the histone deacetylase inhibitor nicotinamide (vitamin B3) can remodel the pathological heterochromatin and upregulate expression of FXN. We aimed to assess the epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia. METHODS: In this exploratory, open-label, dose-escalation study in the UK, male and female patients (aged 18 years or older) with Friedreich's ataxia were given single doses (phase 1) and repeated daily doses of 2-8 g oral nicotinamide for 5 days (phase 2) and 8 weeks (phase 3). Doses were gradually escalated during phases 1 and 2, with individual maximum tolerated doses used in phase 3. The primary outcome was the upregulation of frataxin expression. We also assessed the safety and tolerability of nicotinamide, used chromatin immunoprecipitation to investigate changes in chromatin structure at the FXN gene locus, and assessed the effect of nicotinamide treatment on clinical scales for ataxia. This study is registered with ClinicalTrials.gov, number NCT01589809. FINDINGS: Nicotinamide was generally well tolerated; the main adverse event was nausea, which in most cases was mild, dose-related, and resolved spontaneously or after dose reduction, use of antinausea drugs, or both. Phase 1 showed a dose-response relation for proportional change in frataxin protein concentration from baseline to 8 h post-dose, which increased with increasing dose (p=0·0004). Bayesian analysis predicted that 3·8 g would result in a 1·5-times increase and 7·5 g in a doubling of frataxin protein concentration. Phases 2 and 3 showed that daily dosing at 3·5-6 g resulted in a sustained and significant (p<0·0001) upregulation of frataxin expression, which was accompanied by a reduction in heterochromatin modifications at the FXN locus. Clinical measures showed no significant changes. INTERPRETATION: Nicotinamide was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. Further investigation of the long-term clinical benefits of nicotinamide and its ability to ameliorate frataxin deficiency in Friedreich's ataxia is warranted. FUNDING: Ataxia UK, Ataxia Ireland, Association Suisse de l'Ataxie de Friedreich, Associazione Italiana per le Sindromi Atassiche, UK National Institute for Health Research, European Friedreich's Ataxia Consortium for Translational Studies, and Imperial Biomedical Research Centre.


Asunto(s)
Ataxia de Friedreich/tratamiento farmacológico , Proteínas de Unión a Hierro/efectos de los fármacos , Niacinamida/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Adulto , Cromatina/efectos de los fármacos , Cromatina/genética , Relación Dosis-Respuesta a Droga , Epigénesis Genética , Femenino , Ataxia de Friedreich/genética , Humanos , Proteínas de Unión a Hierro/biosíntesis , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Reino Unido , Adulto Joven , Frataxina
13.
14.
J Neurochem ; 126 Suppl 1: 21-42, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23859339

RESUMEN

This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.


Asunto(s)
Epigénesis Genética/genética , Ataxia de Friedreich/genética , Metilación de ADN , Expansión de las Repeticiones de ADN , ADN sin Sentido/genética , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Interferencia de ARN , Transcripción Genética/genética , Frataxina
15.
Hum Mol Genet ; 22(13): 2662-75, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23474817

RESUMEN

Large intronic expansions of the triplet-repeat sequence (GAA.TTC) cause transcriptional repression of the Frataxin gene (FXN) leading to Friedreich's ataxia (FRDA). We previously found that GAA-triplet expansions stimulate heterochromatinization in vivo in transgenic mice. We report here using chromosome conformation capture (3C) coupled with high-throughput sequencing that the GAA-repeat expansion in FRDA cells stimulates a higher-order structure as a fragment containing the GAA-repeat expansion showed an increased interaction frequency with genomic regions along the FXN locus. This is consistent with a more compacted chromatin and coincided with an increase in both constitutive H3K9me3 and facultative H3K27me3 heterochromatic marks in FRDA. Consistent with this, DNase I accessibility in regions flanking the GAA repeats in patients was decreased compared with healthy controls. Strikingly, this effect could be antagonized with the class III histone deactylase (HDAC) inhibitor vitamin B3 (nicotinamide) which activated the silenced FXN gene in several FRDA models. Examination of the FXN locus revealed a reduction of H3K9me3 and H3K27me3, an increased accessibility to DNase I and an induction of euchromatic H3 and H4 histone acetylations upon nicotinamide treatment. In addition, transcriptomic analysis of nicotinamide treated and untreated FRDA primary lymphocytes revealed that the expression of 67% of genes known to be dysregulated in FRDA was ameliorated by the treatment. These findings show that nictotinamide can up-regulate the FXN gene and reveal a potential mechanism of action for nicotinamide in reactivating the epigenetically silenced FXN gene and therefore support the further assessment of HDAC inhibitors (HDACi's) in FRDA and diseases caused by a similar mechanism.


Asunto(s)
Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Niacinamida/farmacología , Expansión de Repetición de Trinucleótido , Acetilación/efectos de los fármacos , Animales , Línea Celular Transformada , Cromatina/genética , Cromatina/metabolismo , Desoxirribonucleasa I/metabolismo , Epistasis Genética/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Orden Génico , Sitios Genéticos , Heterocromatina/genética , Histonas/metabolismo , Proteínas de Unión a Hierro/genética , Metilación , Ratones , Ratones Transgénicos , Modelos Biológicos , Frataxina
16.
PLoS Genet ; 8(11): e1003051, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209427

RESUMEN

The expansion of CAG/CTG repeats is responsible for many diseases, including Huntington's disease (HD) and myotonic dystrophy 1. CAG/CTG expansions are unstable in selective somatic tissues, which accelerates disease progression. The mechanisms underlying repeat instability are complex, and it remains unclear whether chromatin structure and/or transcription contribute to somatic CAG/CTG instability in vivo. To address these issues, we investigated the relationship between CAG instability, chromatin structure, and transcription at the HD locus using the R6/1 and R6/2 HD transgenic mouse lines. These mice express a similar transgene, albeit integrated at a different site, and recapitulate HD tissue-specific instability. We show that instability rates are increased in R6/2 tissues as compared to R6/1 matched-samples. High transgene expression levels and chromatin accessibility correlated with the increased CAG instability of R6/2 mice. Transgene mRNA and H3K4 trimethylation at the HD locus were increased, whereas H3K9 dimethylation was reduced in R6/2 tissues relative to R6/1 matched-tissues. However, the levels of transgene expression and these specific histone marks were similar in the striatum and cerebellum, two tissues showing very different CAG instability levels, irrespective of mouse line. Interestingly, the levels of elongating RNA Pol II at the HD locus, but not the initiating form of RNA Pol II, were tissue-specific and correlated with CAG instability levels. Similarly, H3K36 trimethylation, a mark associated with transcription elongation, was specifically increased at the HD locus in the striatum and not in the cerebellum. Together, our data support the view that transcription modulates somatic CAG instability in vivo. More specifically, our results suggest for the first time that transcription elongation is regulated in a tissue-dependent manner, contributing to tissue-selective CAG instability.


Asunto(s)
Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso , Proteínas Nucleares , Transcripción Genética , Expansión de Repetición de Trinucleótido/genética , Animales , Cromatina/genética , Cuerpo Estriado/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteína Huntingtina , Metilación , Ratones , Ratones Transgénicos , Neostriado/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidad de Órganos
17.
Nat Struct Mol Biol ; 19(10): 973-5, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23037592

RESUMEN

Maintenance of genome integrity, cell division and gene expression have all been shown to be regulated by the condensation of DNA into heterochromatin. In a study published in this issue, Bulut-Karslioglu et al. reveal a new heterochromatin function for transcription factors in a mammalian system. They show that instead of activating gene expression, in the context of heterochromatic repeats, specific transcription factors are necessary for the maintenance of transcriptional repression and heterochromatin.


Asunto(s)
Heterocromatina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Factor de Transcripción PAX3 , Factor de Transcripción PAX9
18.
PLoS Genet ; 7(3): e1001354, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21483810

RESUMEN

Methylation of histone H3 lysine 4 (H3K4me) is an evolutionarily conserved modification whose role in the regulation of gene expression has been extensively studied. In contrast, the function of H3K4 acetylation (H3K4ac) has received little attention because of a lack of tools to separate its function from that of H3K4me. Here we show that, in addition to being methylated, H3K4 is also acetylated in budding yeast. Genetic studies reveal that the histone acetyltransferases (HATs) Gcn5 and Rtt109 contribute to H3K4 acetylation in vivo. Whilst removal of H3K4ac from euchromatin mainly requires the histone deacetylase (HDAC) Hst1, Sir2 is needed for H3K4 deacetylation in heterochomatin. Using genome-wide chromatin immunoprecipitation (ChIP), we show that H3K4ac is enriched at promoters of actively transcribed genes and located just upstream of H3K4 tri-methylation (H3K4me3), a pattern that has been conserved in human cells. We find that the Set1-containing complex (COMPASS), which promotes H3K4me2 and -me3, also serves to limit the abundance of H3K4ac at gene promoters. In addition, we identify a group of genes that have high levels of H3K4ac in their promoters and are inadequately expressed in H3-K4R, but not in set1Δ mutant strains, suggesting that H3K4ac plays a positive role in transcription. Our results reveal a novel regulatory feature of promoter-proximal chromatin, involving mutually exclusive histone modifications of the same histone residue (H3K4ac and H3K4me).


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Eucromatina/genética , Eucromatina/metabolismo , Regulación Enzimológica de la Expresión Génica , Redes Reguladoras de Genes/genética , Heterocromatina/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Lisina/genética , Metilación , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo
19.
Trends Genet ; 27(4): 132-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21334089

RESUMEN

Males and females display differences in physiology, behaviour and susceptibility to many diseases. Genome-wide transcription profiling studies have uncovered large-scale sex differences in autosomal gene expression in somatic tissues that are thought to underlie such 'sexual dimorphisms'. Because males and females differ genetically mainly in their sex chromosome complement, most sex differences can be traced back to the X and Y chromosomes. Although sex hormones are usually considered the main architects of sexual dimorphisms, recent studies have demonstrated that sex chromosomes can also induce sex differences in somatic gene expression in the absence of hormonal differences. The recent discovery of epigenetic sex differences that are not hormone-induced brings us closer to understanding differences in autosomal gene expression. In this review, we discuss the insights gained from these findings and the mechanisms by which X and Y chromosomes might induce epigenetic sex differences.


Asunto(s)
Epigénesis Genética , Cromosomas Sexuales , Aneuploidia , Animales , Humanos , Caracteres Sexuales , Transcripción Genética
20.
J Neurophysiol ; 104(6): 3009-20, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926611

RESUMEN

The electrophysiological properties of substantia nigra pars compacta (SNC) dopamine neurons can influence their susceptibility to degeneration in toxin-based models of Parkinson's disease (PD), suggesting that excitotoxic and/or hypoactive mechanisms may be engaged during the early stages of the disease. It is unclear, however, whether the electrophysiological properties of SNC dopamine neurons are affected by genetic susceptibility to PD. Here we show that deletion of PD-associated genes, PINK1 or HtrA2/Omi, leads to a functional reduction in the activity of small-conductance Ca(2+)-activated potassium channels. This reduction causes SNC dopamine neurons to fire action potentials in an irregular pattern and enhances burst firing in brain slices and in vivo. In contrast, PINK1 deletion does not affect firing regularity in ventral tegmental area dopamine neurons or substantia nigra pars reticulata GABAergic neurons. These findings suggest that changes in SNC dopamine neuron excitability may play a role in their selective vulnerability in PD.


Asunto(s)
Proteínas Mitocondriales/deficiencia , Neuronas/fisiología , Proteínas Quinasas/deficiencia , Serina Endopeptidasas/deficiencia , Sustancia Negra/patología , Potenciales de Acción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Dopamina/fisiología , Serina Peptidasa A2 que Requiere Temperaturas Altas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Microscopía de Interferencia , Microscopía por Video , Proteínas Mitocondriales/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/efectos de los fármacos , Canales de Potasio Calcio-Activados/fisiología , Proteínas Quinasas/genética , Serina Endopeptidasas/genética , Sustancia Negra/fisiopatología , Área Tegmental Ventral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...