Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34885176

RESUMEN

In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient's own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.

2.
Nat Commun ; 12(1): 5772, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599178

RESUMEN

ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Antiinfecciosos/metabolismo , Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Células A549 , Animales , Enterovirus/fisiología , Células HEK293 , Células HeLa , Herpesvirus Humano 1/fisiología , Humanos , Interferón Tipo I/metabolismo , Gotas Lipídicas/metabolismo , Listeria monocytogenes/fisiología , Masculino , Ratones Endogámicos C57BL , Unión Proteica , Multimerización de Proteína , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Células THP-1 , Ubiquitina/metabolismo
3.
Antimicrob Agents Chemother ; 65(10): e0065921, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280017

RESUMEN

The major global health threat tuberculosis is caused by Mycobacterium tuberculosis. M. tuberculosis has a complex cell envelope-a partially covalently linked composite of polysaccharides, peptidoglycan, and lipids, including a mycolic acid layer-which conveys pathogenicity but also protects against antibiotics. Given previous successes in treating Gram-positive and -negative infections with cell wall-degrading enzymes, we investigated such an approach for M. tuberculosis. In this study, we aimed to (i) develop an M. tuberculosis microtiter growth inhibition assay that allows undisturbed cell envelope formation to overcome the invalidation of results by typical clumped M. tuberculosis growth in surfactant-free assays, (ii) explore anti-M. tuberculosis potency of cell wall layer-degrading enzymes, and (iii) investigate the concerted action of several such enzymes. We inserted a bacterial luciferase operon in an auxotrophic M. tuberculosis strain to develop a microtiter assay that allows proper evaluation of cell wall-degrading anti-M. tuberculosis enzymes. We assessed growth inhibition by enzymes (recombinant mycobacteriophage mycolic acid esterase [LysB], fungal α-amylase, and human and chicken egg white lysozymes) and combinations thereof in the presence or absence of biopharmaceutically acceptable surfactant. Our biosafety level 2 assay identified both LysB and lysozymes as potent M. tuberculosis inhibitors but only in the presence of surfactant. Moreover, the most potent disruption of the mycolic acid hydrophobic barrier was obtained by the highly synergistic combination of LysB, α-amylase, and polysorbate 80. Synergistically acting cell wall-degrading enzymes are potently inhibiting M. tuberculosis, which sets the scene for the design of specifically tailored antimycobacterial (fusion) enzymes. Airway delivery of protein therapeutics has already been established and should be studied in animal models for active TB.


Asunto(s)
Micobacteriófagos , Mycobacterium tuberculosis , Animales , Pared Celular , Humanos , Ácidos Micólicos , Peptidoglicano
4.
mSystems ; 5(4)2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32788404

RESUMEN

Mutant resources are essential to improve our understanding of the biology of slow-growing mycobacteria, which include the causative agents of tuberculosis in various species, including humans. The generation of deletion mutants in slow-growing mycobacteria in a gene-by-gene approach in order to make genome-wide ordered mutant resources is still a laborious and costly approach, despite the recent development of improved methods. On the other hand, transposon mutagenesis in combination with Cartesian pooling-coordinate sequencing (CP-CSeq) allows the creation of large archived Mycobacterium transposon insertion libraries. However, such mutants contain selection marker genes with a risk of polar gene effects, which are undesired both for research and for use of these mutants as live attenuated vaccines. In this paper, a derivative of the Himar1 transposon is described which allows the generation of clean, markerless knockouts from archived transposon libraries. By incorporating FRT sites for FlpE/FRT-mediated recombination and I-SceI sites for ISceIM-based transposon removal, we enable two thoroughly experimentally validated possibilities to create unmarked mutants from such marked transposon mutants. The FRT approach is highly efficient but leaves an FRT scar in the genome, whereas the I-SceI-mediated approach can create mutants without any heterologous DNA in the genome. The combined use of CP-CSeq and this optimized transposon was applied in the BCG Danish 1331 vaccine strain (WHO reference 07/270), creating the largest ordered, characterized resource of mutants in a member of the Mycobacterium tuberculosis complex (18,432 clones, mutating 83% of the nonessential M. tuberculosis homologues), from which markerless knockouts can be easily generated.IMPORTANCE While speeding up research for many fields of biology (e.g., yeast, plant, and Caenorhabditis elegans), genome-wide ordered mutant collections are still elusive in mycobacterial research. We developed methods to generate such resources in a time- and cost-effective manner and developed a newly engineered transposon from which unmarked mutants can be efficiently generated. Our library in the WHO reference vaccine strain of Mycobacterium bovis BCG Danish targets 83% of all nonessential genes and was made publicly available via the BCCM/ITM Mycobacteria Collection. This resource will speed up Mycobacterium research (e.g., drug resistance research and vaccine development) and paves the way to similar genome-wide mutant collections in other strains of the Mycobacterium tuberculosis complex. The stretch to a full collection of mutants in all nonessential genes is now much shorter, with just 17% remaining genes to be targeted using gene-by-gene approaches, for which highly effective methods have recently also been described.

5.
Hum Vaccin Immunother ; 16(10): 2374-2388, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32186959

RESUMEN

Glycosylation is an important post-translational modification, giving rise to a diverse and abundant repertoire of glycans on the cell surface, collectively known as the glycome. When focusing on immunity, glycans are indispensable in virtually all signaling and cell-cell interactions. More specifically, glycans have been shown to regulate key pathophysiological steps within T cell biology such as T cell development, thymocyte selection, T cell activity and signaling as well as T cell differentiation and proliferation. They are of major importance in determining the interaction of human T cells with tumor cells. In this review, we will describe the role of glycosylation of human T cells in more depth, elaborate on the importance of glycosylation in the interaction of human T cells with tumor cells and discuss the potential of cancer immunotherapies that are based on manipulating the glycome functions at the tumor immune interface. 1,2.


Asunto(s)
Neoplasias , Linfocitos T , Glicosilación , Humanos , Neoplasias/terapia , Polisacáridos , Procesamiento Proteico-Postraduccional
6.
FEBS J ; 286(19): 3757-3774, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31419030

RESUMEN

The genus Mycobacterium includes several pathogens that cause severe disease in humans, like Mycobacterium tuberculosis (M. tb), the infectious agent causing tuberculosis. Genetic tools to engineer mycobacterial genomes, in a targeted or random fashion, have provided opportunities to investigate M. tb infection and pathogenesis. Furthermore, they have allowed the identification and validation of potential targets for the diagnosis, prevention, and treatment of tuberculosis. This review describes the various methods that are available for the generation of mutants in Mycobacterium species, focusing specifically on tools for altering slow-growing mycobacteria from the M. tb complex. Among others, it incorporates the recent new molecular biological technologies (e.g. ORBIT) to rapidly and/or genome-wide comprehensively obtain targeted mutants in mycobacteria. As such, this review can be used as a guide to select the appropriate genetic tools to generate mycobacterial mutants of interest, which can be used as tools to aid understanding of M. tb infection or to help developing TB intervention strategies.


Asunto(s)
Genes Bacterianos , Mutagénesis , Mycobacterium tuberculosis/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
7.
BMC Genomics ; 20(1): 561, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286858

RESUMEN

BACKGROUND: Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG) is the only vaccine available against tuberculosis (TB). In an effort to standardize the vaccine production, three substrains, i.e. BCG Danish 1331, Tokyo 172-1 and Russia BCG-1 were established as the WHO reference strains. Both for BCG Tokyo 172-1 as Russia BCG-1, reference genomes exist, not for BCG Danish. In this study, we set out to determine the completely assembled genome sequence for BCG Danish and to establish a workflow for genome characterization of engineering-derived vaccine candidate strains. RESULTS: By combining second (Illumina) and third (PacBio) generation sequencing in an integrated genome analysis workflow for BCG, we could construct the completely assembled genome sequence of BCG Danish 1331 (07/270) (and an engineered derivative that is studied as an improved vaccine candidate, a SapM KO), including the resolution of the analytically challenging long duplication regions. We report the presence of a DU1-like duplication in BCG Danish 1331, while this tandem duplication was previously thought to be exclusively restricted to BCG Pasteur. Furthermore, comparative genome analyses of publicly available data for BCG substrains showed the absence of a DU1 in certain BCG Pasteur substrains and the presence of a DU1-like duplication in some BCG China substrains. By integrating publicly available data, we provide an update to the genome features of the commonly used BCG strains. CONCLUSIONS: We demonstrate how this analysis workflow enables the resolution of genome duplications and of the genome of engineered derivatives of the BCG Danish vaccine strain. The BCG Danish WHO reference genome will serve as a reference for future engineered strains and the established workflow can be used to enhance BCG vaccine standardization.


Asunto(s)
Vacuna BCG/inmunología , Genómica/normas , Mycobacterium bovis/genética , Mycobacterium bovis/inmunología , Organización Mundial de la Salud , Genoma Bacteriano/genética , Estándares de Referencia
8.
Vaccine ; 37(27): 3539-3551, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31122861

RESUMEN

The Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccine shows variable efficacy in protection against adult tuberculosis (TB). Earlier, we have described a BCG mutant vaccine with a transposon insertion in the gene coding for the secreted acid phosphatase SapM, which led to enhanced long-term survival of vaccinated mice challenged with TB infection. To facilitate development of this mutation as part of a future improved live attenuated TB vaccine, we have now characterized the genome and transcriptome of this sapM::Tn mutant versus parental BCG Pasteur. Furthermore, we show that the sapM::Tn mutant had an equal low pathogenicity as WT BCG upon intravenous administration to immunocompromised SCID mice, passing this important safety test. Subsequently, we investigated the clearance of this improved vaccine strain following vaccination and found a more effective innate immune control over the sapM::Tn vaccine bacteria as compared to WT BCG. This leads to a fast contraction of IFNγ producing Th1 and Tc1 cells after sapM::Tn BCG vaccination. These findings corroborate that a live attenuated vaccine that affords improved long-term survival upon TB infection can be obtained by a mutation that further attenuates BCG. These findings suggest that an analysis of the effectiveness of innate immune control of the vaccine bacteria could be instructive also for other live attenuated TB vaccines that are currently under development, and encourage further studies of SapM mutation as a strategy in developing a more protective live attenuated TB vaccine.


Asunto(s)
Fosfatasa Ácida/genética , Vacuna BCG/efectos adversos , Evaluación Preclínica de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Mutación , Mycobacterium bovis/patogenicidad , Factores de Virulencia/genética , Animales , Vacuna BCG/genética , Femenino , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones SCID , Mycobacterium bovis/enzimología , Mycobacterium bovis/genética , Linfocitos T/inmunología
9.
Nat Commun ; 6: 7106, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25960123

RESUMEN

Reverse genetics research approaches require the availability of methods to rapidly generate specific mutants. Alternatively, where these methods are lacking, the construction of pre-characterized libraries of mutants can be extremely valuable. However, this can be complex, expensive and time consuming. Here, we describe a robust, easy to implement parallel sequencing-based method (Cartesian Pooling-Coordinate Sequencing or CP-CSeq) that reports both on the identity as well as on the location of sequence-tagged biological entities in well-plate archived clone collections. We demonstrate this approach using a transposon insertion mutant library of the Mycobacterium bovis BCG vaccine strain, providing the largest resource of mutants in any strain of the M. tuberculosis complex. The method is applicable to any entity for which sequence-tagged identification is possible.


Asunto(s)
ADN Bacteriano/genética , Biblioteca de Genes , Estudio de Asociación del Genoma Completo , Mycobacterium bovis/metabolismo , Mutagénesis , Mutación , Mycobacterium bovis/genética
10.
Nat Biotechnol ; 32(5): 485-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24752077

RESUMEN

Heterogeneity in the N-glycans on therapeutic proteins causes difficulties for protein purification and process reproducibility and can lead to variable therapeutic efficacy. This heterogeneity arises from the multistep process of mammalian complex-type N-glycan synthesis. Here we report a glycoengineering strategy--which we call GlycoDelete--that shortens the Golgi N-glycosylation pathway in mammalian cells. This shortening results in the expression of proteins with small, sialylated trisaccharide N-glycans and reduced complexity compared to native mammalian cell glycoproteins. GlycoDelete engineering does not interfere with the functioning of N-glycans in protein folding, and the physiology of cells modified by GlycoDelete is similar to that of wild-type cells. A therapeutic human IgG expressed in GlycoDelete cells had properties, such as reduced initial clearance, that might be beneficial when the therapeutic goal is antigen neutralization. This strategy for reducing N-glycan heterogeneity on mammalian proteins could lead to more consistent performance of therapeutic proteins and modulation of biopharmaceutical functions.


Asunto(s)
Polisacáridos/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/genética , Animales , Glicosilación , Humanos , Ratones , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
J Biol Chem ; 287(18): 14863-72, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22362767

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) is an important component of the tumor necrosis factor receptor 1 (TNFR1) signaling pathway. Depending on the cell type and conditions, RIPK1 mediates MAPK and NF-κB activation as well as cell death. Using a mutant form of RIPK1 (RIPK1ΔID) lacking the intermediate domain (ID), we confirm the requirement of this domain for activation of these signaling events. Moreover, expression of RIPK1ΔID resulted in enhanced recruitment of caspase-8 to the TNFR1 complex II component Fas-associated death domain (FADD), which allowed a shift from TNF-induced necroptosis to apoptosis in L929 cells. Addition of the RIPK1 kinase inhibitor necrostatin-1 strongly reduced recruitment of RIPK1 and caspase-8 to FADD and subsequent apoptosis, indicating a role for RIPK1 kinase activity in apoptotic complex formation. Our study shows that RIPK1 has an anti-apoptotic function residing in its ID and demonstrates a cellular system as an elegant genetic model for RIPK1 kinase-dependent apoptosis that, in contrast to the Smac mimetic model, does not rely on depletion of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2).


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular , Humanos , Imidazoles/farmacología , Indoles/farmacología , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Necrosis/genética , Necrosis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Ubiquitina-Proteína Ligasas
12.
EMBO Mol Med ; 3(4): 222-34, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21328541

RESUMEN

Mycobacterium bovis bacille Calmette-Guerin (BCG) provides only limited protection against pulmonary tuberculosis. We tested the hypothesis that BCG might have retained immunomodulatory properties from its pathogenic parent that limit its protective immunogenicity. Mutation of the molecules involved in immunomodulation might then improve its vaccine potential. We studied the vaccine potential of BCG mutants deficient in the secreted acid phosphatase, SapM, or in the capping of the immunomodulatory ManLAM cell wall component with α-1,2-oligomannoside. Both systemic and intratracheal challenge of mice with Mycobacterium tuberculosis following vaccination showed that the SapM mutant, compared to the parental BCG vaccine, provided better protection: it led to longer-term survival. Persistence of the SapM-mutated BCG in vivo resembled that of the parental BCG indicating that this mutation will likely not compromise the safety of the BCG vaccine. The SapM mutant BCG vaccine was more effective than the parental vaccine in inducing recruitment and activation of CD11c(+) MHC-II(int) CD40(int) dendritic cells (DCs) to the draining lymph nodes. Thus, SapM acts by inhibiting recruitment of DCs and their activation at the site of vaccination.


Asunto(s)
Fosfatasa Ácida/genética , Vacuna BCG/inmunología , Proteínas Bacterianas/genética , Mycobacterium bovis/enzimología , Mycobacterium tuberculosis/inmunología , Eliminación de Secuencia , Tuberculosis Pulmonar/prevención & control , Fosfatasa Ácida/inmunología , Animales , Vacuna BCG/administración & dosificación , Vacuna BCG/genética , Proteínas Bacterianas/inmunología , Citocinas/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium bovis/genética , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/fisiología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología
13.
Microb Cell Fact ; 9: 93, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21092289

RESUMEN

BACKGROUND: Yeast expression systems with altered N-glycosylation are now available to produce glycoproteins with homogenous, defined N-glycans. However, data on the behaviour of these strains in high cell density cultivation are scarce. RESULTS: Here, we report on cultivations under controlled specific growth rate of a GlycoSwitch-Man5 Pichia pastoris strain producing Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) at high levels (hundreds of milligrams per liter). We demonstrate that homogenous Man5GlcNAc2 N-glycosylation of the secreted proteins is achieved at all specific growth rates tested. CONCLUSIONS: Together, these data illustrate that the GlycoSwitch-Man5 P. pastoris is a robust production strain for homogenously N-glycosylated proteins.


Asunto(s)
Fermentación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pichia/crecimiento & desarrollo , Clonación Molecular , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Cell Mol Life Sci ; 67(10): 1567-79, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20198502

RESUMEN

In this review, we discuss the signal-transduction pathways of three major cellular responses induced by tumor necrosis factor (TNF): cell survival through NF-kappaB activation, apoptosis, and necrosis. Recruitment and activation of caspases plays a crucial role in the initiation and execution of TNF-induced apoptosis. However, experimental inhibition of caspases reveals an alternative cell death pathway, namely necrosis, also called necroptosis, suggesting that caspases actively suppress the latter outcome. TNF-induced necrotic cell death crucially depends on the kinase activity of receptor interacting protein serine-threonine kinase 1 (RIP1) and RIP3. It was recently demonstrated that ubiquitination of RIP1 determines whether it will function as a pro-survival or pro-cell death molecule. Deeper insight into the mechanisms that control the molecular switches between cell survival and cell death will help us to understand why TNF can exert so many different biological functions in the etiology and pathogenesis of human diseases.


Asunto(s)
Factor de Necrosis Tumoral alfa/metabolismo , Animales , Muerte Celular , Humanos , Mitocondrias/enzimología , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo
15.
Cell Res ; 20(4): 421-33, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20125124

RESUMEN

Interleukin-3 (IL-3) deprivation of the mouse pro-B cell line Ba/F3 induces cell death that is abrogated by B-cell lymphoma 2 (Bcl-2) overexpression, but remains unaffected by the pan-caspase inhibitor carbobenzoxy-valyl-analyl-aspartyl-[O-methyl]-fluoromethylketone (zVAD-fmk). IL-3 withdrawal causes receptor-interacting protein (RIP)1 cleavage into C-terminal fragments of 30 and 25 kDa, and only cleavage leading to the former was prevented by zVAD-fmk. siRNA experiments demonstrated that generation of the 25-kDa fragment was due to a Bcl-2-modulated release of the mitochondrial serine protease high temperature requirement protein A2 (HtrA2)/Omi. Accordingly, recombinant HtrA2/Omi efficiently cleaved mouse RIP1 in vitro, generating fragments matching those observed in IL-3-deprived Ba/F3 cells. The HtrA2/Omi cleavage site in mouse RIP1 was mapped to the intermediate domain and the corresponding N- and C-terminal fragments were impaired in their ability to activate nuclear factor-kappaB, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Interestingly, knockdown of HtrA2/Omi afforded protection against IL-3 withdrawal-induced death in the presence of zVAD-fmk, demonstrating a role for HtrA2/Omi in caspase-independent cell death during growth factor withdrawal by cleaving RIP1.


Asunto(s)
Apoptosis , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Serina Endopeptidasas/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Animales , Caspasas/metabolismo , Línea Celular , Serina Peptidasa A2 que Requiere Temperaturas Altas , Interleucina-3/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , FN-kappa B/metabolismo , Células Precursoras de Linfocitos B/inmunología , Células Precursoras de Linfocitos B/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Biol Chem ; 391(2-3): 149-161, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20128687

RESUMEN

Glycomics research has become indispensable in many research fields such as immunity, signal transduction and development. Moreover, changes in the glycosylation of proteins and lipids have been reported in several diseases including cancer. The analysis of a complex post-translational modification such as glycosylation depends on the availability or development of appropriate analytical technologies. The research goal determines the sensitivity, resolution and throughput requirements and guides the choice of a particular technology. This review highlights the evolution of glycan profiling tools in the past 5 years. We focus on capillary electrophoresis, liquid chromatography, mass spectrometry and lectin microarrays.


Asunto(s)
Glicómica/métodos , Polisacáridos/análisis , Polisacáridos/química , Animales , Cromatografía Liquida , Electroforesis Capilar , Glicosilación , Humanos , Espectrometría de Masas , Análisis por Micromatrices , Polisacáridos/metabolismo
17.
Curr Mol Med ; 8(3): 207-20, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18473820

RESUMEN

Necrotic cell death has long been considered an accidental and uncontrolled mode of cell death. But recently it has become clear that necrosis is a molecularly regulated event that is associated with pathologies such as ischemia-reperfusion (IR) injury, neurodegeneration and pathogen infection. The serine/threonine kinase receptor-interacting protein 1 (RIP1) plays a crucial role during the initiation of necrosis induced by ligand-receptor interactions. On the other hand, ATP depletion is an initiating factor in ischemia-induced necrotic cell death. Common players in necrotic cell death irrespective of the stimulus are calcium and reactive oxygen species (ROS). During necrosis, elevated cytosolic calcium levels typically lead to mitochondrial calcium overload, bioenergetics effects, and activation of proteases and phospholipases. ROS initiates damage to lipids, proteins and DNA and consequently results in mitochondrial dysfunction, ion balance deregulation and loss of membrane integrity. Membrane destabilization during necrosis is also mediated by other factors, such as acid-sphingomyelinase (ASM), phospholipase A(2) (PLA(2)) and calpains. Furthermore, necrotic cells release immunomodulatory factors that lead to recognition and engulfment by phagocytes and the subsequent immunological response. The knowledge of the molecular mechanisms involved in necrosis has contributed to our under-standing of necrosis-associated pathologies. In this review we will focus on the intracellular and intercellular signaling events in necrosis induced by different stimuli, such as oxidative stress, cytokines and pathogen-associated molecular patterns (PAMPs), which can be linked to several pathologies such as stroke, cardiac failure, neurodegenerative diseases, and infections.


Asunto(s)
Necrosis/metabolismo , Animales , Citocinas/metabolismo , Daño del ADN , Humanos , Peroxidación de Lípido , Modelos Biológicos , Necrosis/etiología , Fosfolipasas A2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Esfingomielina Fosfodiesterasa/metabolismo
18.
Curr Pharm Des ; 13(4): 367-85, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17311555

RESUMEN

This review provides an overview of the biochemistry and activation of inflammatory caspases, and focuses on their therapeutic potential as disease targets in pathologies such as sepsis, Crohn's disease, rheumatoid arthritis, traumatic brain injury and amyotrophic lateral sclerosis (ALS). We summarize the proof-of-principal evidence obtained by studies in several corresponding experimental disease models confirming the validity of strategies targeting inflammatory caspases. We discuss the use of inflammatory caspase inhibitors, such as VX-740 (Pralnacasan) and VX-765, in clinical studies for rheumatoid arthritis and osteoarthritis. Finally, we point out recent approaches identifying novel peptidomimetic or non-peptide caspase inhibitors with suitable clinical profiles.


Asunto(s)
Antiinflamatorios/farmacología , Inhibidores de Caspasas , Diseño de Fármacos , Inflamación/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/enzimología , Azepinas/farmacología , Encefalopatías/tratamiento farmacológico , Encefalopatías/enzimología , Caspasas/química , Caspasas/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Humanos , Inflamación/enzimología , Isoquinolinas/farmacología , Modelos Moleculares , Estructura Molecular , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/uso terapéutico , Conformación Proteica , Piridazinas/farmacología , Relación Estructura-Actividad , Resultado del Tratamiento
19.
Sci STKE ; 2006(358): pe44, 2006 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-17062895

RESUMEN

The use of caspase inhibitors has revealed the existence of alternative backup cell death programs for apoptosis. The broad-spectrum caspase inhibitor zVAD-fmk modulates the three major types of cell death. Addition of zVAD-fmk blocks apoptotic cell death, sensitizes cells to necrotic cell death, and induces autophagic cell death. Several studies have shown a crucial role for the kinase RIP1 and the adenosine nucleotide translocator (ANT)-cyclophilin D (CypD) complex in necrotic cell death. The underlying mechanism of zVAD-fmk-mediated sensitization to necrotic cell death involves the inhibition of caspase-8-mediated proteolysis of RIP1 and disturbance of the ANT-CypD interaction. RIP1 is also involved in autophagic cell death. Caspase inhibitors and knockdown studies have revealed negative roles for catalase and caspase-8 in autophagic cell death. The positive role of RIP1 and the negative role of caspase-8 in both necrotic and autophagic cell death suggest that the pathways of these two types of cell death are interconnected. Necrotic cell death represents a rapid cellular response involving mitochondrial reactive oxygen species (ROS) production, decreased adenosine triphosphate concentration, and other cellular insults, whereas autophagic cell death first starts as a survival attempt by cleaning up ROS-damaged mitochondria. However, when this process occurs in excess, autophagy itself becomes cytotoxic and eventually leads to autophagic cell death. A better understanding of the molecular mechanisms of these alternative cell death pathways may provide therapeutic tools to combat cell death associated with neurodegenerative diseases, ischemia-reperfusion pathologies, and infectious diseases, and may also facilitate the development of alternative cytotoxic strategies in cancer treatment.


Asunto(s)
Muerte Celular/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Receptores del Factor de Necrosis Tumoral/fisiología , Translocador 1 del Nucleótido Adenina/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Unión Competitiva , Inhibidores de Caspasas , Muerte Celular/fisiología , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Humanos , Necrosis , Neoplasias/patología , Proteínas de Complejo Poro Nuclear/fisiología , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/fisiología , Proteínas de Unión al ARN/fisiología , Receptores del Factor de Necrosis Tumoral/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/fisiología
20.
Biochim Biophys Acta ; 1757(9-10): 1371-87, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16950166

RESUMEN

Necrosis has long been described as a consequence of physico-chemical stress and thus accidental and uncontrolled. Recently, it is becoming clear that necrotic cell death is as well controlled and programmed as caspase-dependent apoptosis, and that it may be an important cell death mode that is both pathologically and physiologically relevant. Necrotic cell death is not the result of one well-described signalling cascade but is the consequence of extensive crosstalk between several biochemical and molecular events at different cellular levels. Recent data indicate that serine/threonine kinase RIP1, which contains a death domain, may act as a central initiator. Calcium and reactive oxygen species (ROS) are main players during the propagation and execution phases of necrotic cell death, directly or indirectly provoking damage to proteins, lipids and DNA, which culminates in disruption of organelle and cell integrity. Necrotically dying cells initiate pro-inflammatory signalling cascades by actively releasing inflammatory cytokines and by spilling their contents when they lyse. Unravelling the signalling cascades contributing to necrotic cell death will permit us to develop tools to specifically interfere with necrosis at certain levels of signalling. Necrosis occurs in both physiological and pathophysiological processes, and is capable of killing tumour cells that have developed strategies to evade apoptosis. Thus detailed knowledge of necrosis may be exploited in therapeutic strategies.


Asunto(s)
Mediadores de Inflamación/inmunología , Necrosis/patología , Transducción de Señal , Animales , Muerte Celular , Citoesqueleto/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...