Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 88(5): 704-715, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331716

RESUMEN

Process of photosynthesis in the green bacteria Chloroflexus (Cfx.) aurantiacus starts from absorption of light by chlorosomes, peripheral antennas consisting of thousands of bacteriochlorophyll c (BChl c) molecules combined into oligomeric structures. In this case, the excited states are formed in BChl c, energy of which migrates along the chlorosome towards the baseplate and further to the reaction center, where the primary charge separation occurs. Energy migration is accompanied by non-radiative electronic transitions between the numerous exciton states, that is, exciton relaxation. In this work, we studied dynamics of the exciton relaxation in Cfx. aurantiacus chlorosomes using differential femtosecond spectroscopy at cryogenic temperature (80 K). Chlorosomes were excited by 20-fs light pulses at wavelengths in the range from 660 to 750 nm, and differential (light-dark) absorption kinetics were measured at a wavelength of 755 nm. Mathematical analysis of the obtained data revealed kinetic components with characteristic times of 140, 220, and 320 fs, which are responsible for exciton relaxation. As the excitation wavelength decreased, the number and relative contribution of these components increased. Theoretical modelling of the obtained data was carried out based of the cylindrical model of BChl c. Nonradiative transitions between the groups of exciton bands were described by a system of kinetic equations. The model that takes into account energy and structural disorder of chlorosomes turned out to be the most adequate.


Asunto(s)
Chloroflexus , Chloroflexus/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Análisis Espectral , Bacterioclorofilas/química , Fotosíntesis
2.
Biochemistry (Mosc) ; 88(12): 2084-2093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38462452

RESUMEN

In green photosynthetic bacteria, light is absorbed by bacteriochlorophyll (BChl) c/d/e oligomers, which are located in chlorosomes - unique structures created by Nature to collect the energy of very weak light fluxes. Using coherent femtosecond spectroscopy at cryogenic temperature, we detected and studied low-frequency vibrational motions of BChl c oligomers in chlorosomes of the green bacteria Chloroflexus (Cfx.) aurantiacus. The objects of the study were chlorosomes isolated from the bacterial cultures grown under different light intensity. It was found that the Fourier spectrum of low-frequency coherent oscillations in the Qy band of BChl c oligomers depends on the light intensity used for the growth of bacteria. It turned out that the number of low-frequency vibrational modes of chlorosomes increases as illumination under which they were cultivated decreases. Also, the frequency range within which these modes are observed expands, and frequencies of the most modes change. Theoretical modeling of the obtained data and analysis of the literature led to conclusion that the structural basis of Cfx. aurantiacus chlorosomes are short linear chains of BChl c combined into more complex structures. Increase in the length of these chains in chlorosomes grown under weaker light leads to the observed changes in the spectrum of vibrations of BChl c oligomers. This increase is an effective mechanism for bacteria adaptation to changing external conditions.


Asunto(s)
Bacterioclorofilas , Chloroflexus , Bacterioclorofilas/química , Proteínas Bacterianas/química , Análisis Espectral , Bacterias , Luz
3.
Photosynth Res ; 154(3): 291-302, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36115930

RESUMEN

Chlorosomes of green bacteria can be considered as a prototype of future artificial light-harvesting devices due to their unique property of self-assembly of a large number of bacteriochlorophyll (BChl) c/d/e molecules into compact aggregates. The presence of carotenoids (Cars) in chlorosomes is very important for photoprotection, light harvesting and structure stabilization. In this work, we studied for the first time the electrochromic band shift (Stark effect) in Cars of the phototrophic filamentous green bacterium Chloroflexus (Cfx.) aurantiacus induced by fs light excitation of the main pigment, BChl c. The high accuracy of the spectral measurements permitted us to extract a small wavy spectral feature, which, obviously, can be associated with the dynamic shift of the Car absorption band. A global analysis of spectroscopy data and theoretical modeling of absorption spectra showed that near 60% of Cars exhibited a red Stark shift of ~ 25 cm-1 and the remaining 40% exhibited a blue shift. We interpreted this finding as evidence of various orientations of Car in chlorosomes. We estimated the average value of the light-induced electric field strength in the place of Car molecules as ~ 106 V/cm and the average distance between Car and the neighboring BChl c as ~ 10 Å. We concluded that the dynamics of the Car electrochromic band shift mainly reflected the dynamics of exciton migration through the chlorosome toward the baseplate within ~ 1 ps. Our work has unambiguously shown that Cars are sensitive indicators of light-induced internal electric fields in chlorosomes.


Asunto(s)
Chloroflexus , Bacterioclorofilas/química , Carotenoides/química
4.
Phys Chem Chem Phys ; 23(22): 12761-12770, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34042141

RESUMEN

In photosynthetic green bacteria, chlorosomes provide light harvesting with high efficiency. Chlorosomal carotenoids (Cars) participate in light harvesting together with the main pigment, bacteriochlorophyll (BChl) c/d/e. In the present work, we studied the excited-state dynamics in Cars from Chloroflexus (Cfx.) aurantiacus chlorosomes by near infrared pump-probe spectroscopy with 25 fs temporal resolution at room temperature. The S2 state of Cars was excited at a wavelength of ∼520 nm, and the absorption changes were probed at 860-1000 nm where the excited state absorption (ESA) of the Cars S2 state occurred. Global analysis of the spectroscopy data revealed an ultrafast (∼15 fs) and large (>130 nm) red shift of the S2 ESA spectrum together with the well-known S2 → S1 IC (∼190 fs) and Cars → BChl c EET (∼120 fs). The S2 lifetime was found to be ∼74 fs. Our findings are in line with earlier results on the excited-state dynamics in Cars in vitro. To explain the extremely fast S2 dynamics, we have tentatively proposed two alternative schemes. The first scheme assumed the formation of a vibrational wavepacket in the S2 state, the motion of which caused a dynamical red shift of the S2 ESA spectrum. The second scheme assumed the presence of two potential minima in the S2 state and incoherent energy transfer between them.


Asunto(s)
Carotenoides/metabolismo , Chloroflexus/química , Carotenoides/química , Chloroflexus/metabolismo , Procesos Fotoquímicos , Espectroscopía Infrarroja Corta , Factores de Tiempo
5.
Biochim Biophys Acta Bioenerg ; 1862(6): 148396, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33581107

RESUMEN

Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret â†’ Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret â†’ Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Chloroflexus/metabolismo , Transferencia de Energía , Luz , Orgánulos/metabolismo , Fotosíntesis , Chloroflexus/efectos de la radiación , Cinética , Orgánulos/efectos de la radiación
6.
Photosynth Res ; 146(1-3): 95-108, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31939070

RESUMEN

Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104-105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205-214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.


Asunto(s)
Bacterioclorofilas/metabolismo , Chloroflexus/metabolismo , Fotosíntesis , Proteínas Bacterianas/metabolismo , Chloroflexus/efectos de la radiación , Luz , Orgánulos/metabolismo , Análisis Espectral
7.
Physiol Plant ; 166(1): 12-21, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30499123

RESUMEN

Bacteriochlorophyll (BChl) c pigments in the aggregated state are responsible for efficient light harvesting in chlorosomes of the filamentous anoxygenic photosynthetic bacterium, Chloroflexus (Cfx.) aurantiacus. Absorption of light creates excited states in the BChl c aggregates. After subpicosecond intrachlorosomal energy transfer, redistribution and relaxation, the excitation is transferred to the BChl a complexes and further to reaction centers on the picosecond time scale. In this work, the femtosecond excited state dynamics within BChl c oligomers of isolated Cfx. aurantiacus chlorosomes was studied by double difference pump-probe spectroscopy at room temperature. Difference (Alight - Adark ) spectra corresponding to excitation at 725 nm (blue side of the BChl c absorption band) were compared with those corresponding to excitation at 750 nm (red side of the BChl c absorption band). A very fast (time constant 70 ± 10 fs) rise kinetic component was found in the stimulated emission (SE) upon excitation at 725 nm. This component was absent at 750-nm excitation. These data were explained by the dynamical red shift of the SE due to excited state relaxation. The nature and mechanisms of the ultrafast excited state dynamics in chlorosomal BChl c aggregates are discussed.


Asunto(s)
Chloroflexus/metabolismo , Fotosíntesis/fisiología , Transferencia de Energía , Cinética , Proteínas de Plantas/metabolismo , Temperatura
8.
Photosynth Res ; 74(1): 73-85, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-16228546

RESUMEN

Whole cells, chlorosome-membrane complexes and isolated chlorosomes of the green mesophilic filamentous bacterium Oscillochloris trichoides, representing a new family of the green bacteria Oscillochloridaceae, were studied by optical spectroscopy and electron microscopy. It was shown that the main light-harvesting pigment in the chlorosome is BChl c. The presence of BChl a in chlorosomes was visualized only by pigment extraction and fluorescence spectroscopy at 77 K. The molar ratio BChl c: BChl a in chlorosomes was found to vary from 70:1 to 110:1 depending on light intensity used for cell growth. Micrographs of negatively and positively stained chlorosomes as well as of ultrathin sections of the cells were obtained and used for morphometric measurements of chlorosomes. Our results indicated that Osc. trichoides chlorosomes resemble, in part, those from Chlorobiaceae species, namely, in some spectral features of their absorption, fluorescence, CD spectra, pigment content as well as the morphometric characteristics. Additionally, it was shown that similar to Chlorobiaceae species, the light-harvesting chlorosome antenna of Osc. trichoides exhibited a highly redox-dependent BChl c fluorescence. At the same time, the membrane B805-860 BChl a antenna of Osc. trichoides is close to the membrane B808-866 BChl a antenna of Chloroflexaceae species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA