Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 279: 130631, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34134422

RESUMEN

The Hg isotopic composition of 1-year-old Norway spruce (Picea abies) shoots collected from Saarland cornurbation Warndt, Germany, since 1985 by the German Environmental Specimen Bank, were measured for a better understanding of the temporal trends of Hg sources. The isotopic data showed that Hg was mainly taken up as gaseous element mercury (GEM) and underwent oxidation in the spruce needles; this led to a significant decrease in the δ202Hg compared with the atmospheric Hg isotopic composition observed for deciduous leaves and epiphytic lichens. Observation of the odd mass-independent isotopic fractionation (MIF) indicated that Δ199Hg and Δ201Hg were close to but slightly lower than the actual values recorded from the atmospheric measurement of the GEM isotopic composition in non-contaminated sites in U.S. and Europe, whereas observation of the even-MIF indicated almost no differences for Δ200Hg. This confirmed that GEM is a major source of Hg accumulation in spruce shoots. Interestingly, the Hg isotopic composition in the spruce shoots did not change very significantly during the study period of >30 years, even as the Hg concentration decreased significantly. Even-MIF (Δ200Hg) and mass-dependent fractionation (MDF) (δ202Hg) of the Hg isotopes exhibited slight decrease with time, whereas odd-MIF did not show any clear trend. These results suggest a close link between the long-term evolution of GEM isotopic composition in the air and the isotopic composition of bioaccumulated Hg altered by mass-dependent fraction in the spruce shoots.


Asunto(s)
Mercurio , Picea , Monitoreo del Ambiente , Europa (Continente) , Alemania , Mercurio/análisis , Isótopos de Mercurio/análisis , Noruega
2.
Sci Total Environ ; 782: 146825, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33838381

RESUMEN

Limnetic, marine and soil samples of the German environmental specimen bank (ESB) were analyzed for per- and polyfluoroalkyl substances (PFAS) using target analysis and a modified total oxidizable precursor (TOP) assay (direct TOP assay (dTOP)) that works without prior extraction. Target analysis determined ∑PFAS concentrations in bream livers of 8.7-282 µg kg-1 wet weight (ww) in 2019, with highest contaminations in the Rhine and lower Elbe. In bream fillet, concentrations were lower (<0.5-10.6 µg kg-1 ∑PFAS). Contamination of suspended particulate matter (SPM) was highest in the upper Elbe downstream the Czech border (5.5 µg kg-1 dry weight (dw) in 2018). Herring gull eggs from the North and Baltic Seas showed ∑PFAS levels around 53.0-69.6 µg kg-1 ww in 2019. In soil, concentrations ranged between <0.5 and 4.6 µg kg-1 dw with highest levels in the Dueben Heath near Leipzig and the low mountain range Solling. PFOS dominated in most samples. Of the targeted precursors, only FOSA, EtFOSAA, MeFOSAA, 6:2-FtS and 6:2 diPAP were found. Replacement chemicals (ADONA, HFPO-DA, F-53B) were not detected. The dTOP assay revealed that considerable amounts of precursors were present at most riverine sampling sites. Particularly high precursor concentrations were observed in samples from the Upper Elbe at the Czech border and the Upper and Middle Rhine. In herring gull eggs and most soil samples, though, concentrations of precursors were low. Time trend analysis showed decreasing trends for most detected PFAS since 2005. In SPM, however, C4-C6 perfluoroalkyl carboxylic acids seem to increase indicating growing use of precursors based on shorter fluorinated chains. The results demonstrate that target analysis detects only a minor fraction of the PFAS burdens in environmental samples. The dTOP assay can support risk assessment and chemical monitoring with more comprehensive exposure data of the actual contamination.

3.
Talanta ; 160: 499-511, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591644

RESUMEN

The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project "Traceable measurements for monitoring critical pollutants under the European Water Framework Directive" in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid-liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2ngL(-1) as cation) and at the WFD-required limit of quantification (LOQ) (0.06ngL(-1) as cation). The LOQ of the methodology was 0.06ngL(-1) and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail.


Asunto(s)
Compuestos de Trialquiltina/análisis , Contaminantes Químicos del Agua/análisis , Agua Potable/análisis , Monitoreo del Ambiente , Unión Europea , Regulación Gubernamental , Extracción Líquido-Líquido , Espectrometría de Masas/métodos , Aguas Minerales/análisis , Compuestos de Trialquiltina/normas , Contaminantes Químicos del Agua/normas , Calidad del Agua/normas
4.
J Chromatogr A ; 1459: 112-119, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27388657

RESUMEN

Monitoring of water quality is important to control water pollution. Contamination of the aquatic system has a large effect on human health and the environment. Under the European Water Framework Directive (WFD) 2000/60/EC and the related directive on environmental quality standards (EQS) in the field of water policy 2008/105/EC, the need for sensitive reference methods was highlighted. Since tributyltin (TBT) is one of the WFD listed priority substances a method was developed which is capable to qualify and quantify the pollutant at the required low WFD EQS of 0.2ngL(-1) in whole water bodies, i.e. in non-filtered water samples with dissolved organic carbon and suspended particulate matter. Therefore special attention was paid on the interaction of TBT with the suspended particulate matter and humic substances to obtain a complete representation of the pollution in surface waters. Different water samples were investigated varying the content of organic dissolved and suspended matter. Quantification was performed using species-specific isotope dilution (SSID) and gas chromatography with inductively coupled plasma mass spectrometry (GC-ICP-MS). Different sample treatment strategies were evaluated and compared. The process of internal standard addition was investigated and optimized, hence the equilibrium between internal standards and matrix is of primary importance to perform accurate SSID. Samples spiked at EQS level were analyzed with a recovery between 95 and 105 %. Additionally real surface water samples were investigated and the TBT concentration for the whole water body was determined and compared with conventional routine analysis method.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Compuestos de Trialquiltina/análisis , Agua/análisis , Filtración , Agua Dulce/análisis , Humanos , Sustancias Húmicas/análisis , Técnicas de Dilución del Indicador , Material Particulado/análisis , Microextracción en Fase Sólida , Compuestos de Trialquiltina/aislamiento & purificación , Calidad del Agua
5.
Environ Sci Pollut Res Int ; 22(13): 9589-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25940494

RESUMEN

Tributyltin is listed as one of the priority substances in the European Water Framework Directive (WFD). Despite its decreasing input in the environment, it is still present and has to be monitored. In the European Metrology Research Programme project ENV08, a sensitive and reliable analytical method according to the WFD was developed to quantify this environmental pollutant at a very low limit of quantification. With the development of such a primary reference method for tributyltin, the project helped to improve the quality and comparability of monitoring data. An overview of project aims and potential analytical tools is given.


Asunto(s)
Monitoreo del Ambiente/métodos , Compuestos de Trialquiltina/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/legislación & jurisprudencia , Ambiente , Unión Europea , Sustancias Peligrosas , Contaminación Química del Agua/estadística & datos numéricos
6.
Talanta ; 134: 576-586, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25618710

RESUMEN

In Europe the maximum allowable concentration for tributyltin (TBT) compounds in surface water has been regulated by the water framework directive (WFD) and daughter directive that impose a limit of 0.2 ng L(-1) in whole water (as tributyltin cation). Despite the large number of different methodologies for the quantification of organotin species developed in the last two decades, standardised analytical methods at required concentration level do not exist. TBT quantification at picogram level requires efficient and accurate sample preparation and preconcentration, and maximum care to avoid blank contamination. To meet the WFD requirement, a method for the quantification of TBT in mineral water at environmental quality standard (EQS) level, based on solid phase extraction (SPE), was developed and optimised. The quantification was done using species-specific isotope dilution (SSID) followed by gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The analytical process was optimised using a design of experiment (DOE) based on a factorial fractionary plan. The DOE allowed to evaluate 3 qualitative factors (type of stationary phase and eluent, phase mass and eluent volume, pH and analyte ethylation procedure) for a total of 13 levels studied, and a sample volume in the range of 250-1000 mL. Four different models fitting the results were defined and evaluated with statistic tools: one of them was selected and optimised to find the best procedural conditions. C18 phase was found to be the best stationary phase for SPE experiments. The 4 solvents tested with C18, the pH and ethylation conditions, the mass of the phases, the volume of the eluents and the sample volume can all be optimal, but depending on their respective combination. For that reason, the equation of the model conceived in this work is a useful decisional tool for the planning of experiments, because it can be applied to predict the TBT mass fraction recovery when the experimental conditions are drawn. This work shows that SPE is a convenient technique for TBT pre-concentration at pico-trace levels and a robust approach: in fact (i) number of different experimental conditions led to satisfactory results and (ii) the participation of two institutes to the experimental work did not impact the developed model.

7.
Anal Bioanal Chem ; 407(11): 3055-67, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25486919

RESUMEN

One of the unresolved issues of the European Water Framework Directive is the unavailability of realistic water reference materials for the organic priority pollutants at low nanogram-per-liter concentrations. In the present study, three different types of ready-to-use water test materials were developed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and tributyltin (TBT) at nanogram-per-liter levels. The first type simulated the dissolved phase in the water and comprised of a solution of humic acids (HA) at 5 mg L(-1) dissolved organic carbon (DOC) and a spike of the target compounds. The second type of water sample incorporated the particulate phase in water. To this end, model suspended particulate matter (SPM) with a realistic particle size was produced by jet milling soil and sediments containing known amounts of PAHs, PBDEs and TBT and added as slurry to mineral water. The most complex test materials mimicked "whole water" consequently containing both phases, the model SPM and the HA solution with the target analytes strongly bound to the SPM. In this paper, the development of concepts, processing of the starting materials, characterisation of the HA and model SPMs as well as results for homogeneity and stability testing of the ready-to-use test materials are described in detail.

8.
J Forensic Sci ; 59(3): 743-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24329005

RESUMEN

The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...