Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 627(8003): 281-285, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286342

RESUMEN

Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH)1-3. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase4-6. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8-12 billion years ago (redshifts 1-3)7. Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40-µas (0.31-pc) spatial offset between the red and blue photocentres of the Hα line that traces the velocity gradient of a rotating BLR. The flux and differential phase spectra are well reproduced by a thick, moderately inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2 × 108 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6 × 1011 solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems.

2.
Nature ; 467(7311): 64-7, 2010 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-20811453

RESUMEN

The detection of circumstellar water vapour around the ageing carbon star IRC +10216 challenged the current understanding of chemistry in old stars, because water was predicted to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star, grain surface reactions, and photochemistry in the outer circumstellar envelope. With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC +10216 using the Herschel satellite. This includes some high-excitation lines with energies corresponding to approximately 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances are much higher than hitherto predicted.

3.
Astrophys J ; 535(2): L111-L114, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10835311

RESUMEN

Observations with the Short Wavelength Spectrometer on board the Infrared Space Observatory have led to the first detection of the methyl radical CH(3) in the interstellar medium. The nu(2) Q-branch at 16.5 µm and the R(0) line at 16.0 µm have been unambiguously detected toward the Galactic center Sagittarius A*. The analysis of the measured bands gives a column density of &parl0;8.0+/-2.4&parr0;x1014 cm(-2) and an excitation temperature of 17+/-2 K. Gaseous CO at a similarly low excitation temperature and C(2)H(2) are detected for the same line of sight. Using constraints on the H(2) column density obtained from C(18)O and visual extinction, the inferred CH(3) abundance is &parl0;1.3+2.2-0.7&parr0;x10-8. The chemically related CH(4) molecule is not detected, but the pure rotational lines of CH are seen with the Long Wavelength Spectrometer. The absolute abundances and the CH(3)/CH(4) and CH(3)/CH ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out, and reactions of H with polycyclic aromatic hydrocarbons and solid aliphatic material are included.

5.
Nature ; 389(6647): 159-62, 1997 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-9296492

RESUMEN

The atmospheres of the giant planets are reducing, being mainly composed of hydrogen, helium and methane. But the rings and icy satellites that surround these planets, together with the flux of interplanetary dust, could act as important sources of oxygen, which would be delivered to the atmospheres mainly in the form of water ice or silicate dust. Here we report the detection, by infrared spectroscopy, of gaseous H2O in the upper atmospheres of Saturn, Uranus and Neptune. The implied H2O column densities are 1.5 x 10(15), 9 x 10(13) and 3 x 10(14) molecules cm(-2) respectively. CO2 in comparable amounts was also detected in the atmospheres of Saturn and Neptune. These observations can be accounted for by external fluxes of 10(5)-10(7) H2O molecules cm(-2) s(-1) and subsequent chemical processing in the atmospheres. The presence of gaseous water and infalling dust will affect the photochemistry, energy budget and ionospheric properties of these atmospheres. Moreover, our findings may help to constrain the injection rate and possible activity of distant icy objects in the Solar System.


Asunto(s)
Medio Ambiente Extraterrestre , Oxígeno , Planetas , Agua/análisis , Dióxido de Carbono/análisis , Neptuno , Saturno , Espectrofotometría Infrarroja , Urano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...