Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 133: 102600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485438

RESUMEN

Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Cianobacterias/genética , Fitoplancton , Biomasa , Fósforo
2.
Org Biomol Chem ; 20(13): 2681-2692, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293909

RESUMEN

Low-molecular weight natural products display vast structural diversity and have played a key role in the development of novel therapeutics. Here we report the discovery of novel members of the aeruginosin family of natural products, which we named varlaxins. The chemical structures of varlaxins 1046A and 1022A were determined using a combination of mass spectrometry, analysis of one- and two-dimensional NMR spectra, and HPLC analysis of Marfey's derivatives. These analyses revealed that varlaxins 1046A and 1022A are composed of the following moieties: 2-O-methylglyceric acid 3-O-sulfate, isoleucine, 2-carboxy-6-hydroxyoctahydroindole (Choi), and a terminal arginine derivative. Varlaxins 1046A and 1022A differ in the cyclization of this arginine moiety. Interestingly, an unusual α-D-glucopyranose moiety derivatized with two 4-hydroxyphenylacetic acid residues was bound to Choi, a structure not previously reported for other members of the aeruginosin family. We sequenced the complete genome of Nostoc sp. UHCC 0870 and identified the putative 36 kb varlaxin biosynthetic gene cluster. Bioinformatics analysis confirmed that varlaxins belong to the aeruginosin family of natural products. Varlaxins 1046A and 1022A strongly inhibited the three human trypsin isoenzymes with IC50 of 0.62-3.6 nM and 97-230 nM, respectively, including a prometastatic trypsin-3, which is a therapeutically relevant target in several types of cancer. These results substantially broaden the genetic and chemical diversity of the aeruginosin family and provide evidence that the aeruginosin family is a source of strong inhibitors of human serine proteases.


Asunto(s)
Productos Biológicos , Arginina , Productos Biológicos/farmacología , Cromatografía Líquida de Alta Presión , Humanos , Estructura Molecular , Tripsina
3.
Mol Ecol ; 20(22): 4808-21, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21980996

RESUMEN

Legume plants can obtain combined nitrogen for their growth in an efficient way through symbiosis with specific bacteria. The symbiosis between Rhizobium galegae and its host plant Galega is an interesting case where the plant species G. orientalis and G. officinalis form effective, nitrogen-fixing, symbioses only with the appropriate rhizobial counterpart, R. galegae bv. orientalis and R. galegae bv. officinalis, respectively. The symbiotic properties of nitrogen-fixing rhizobia are well studied, but more information is needed on the properties of the host plants. The Caucasus region in Eurasia has been identified as the gene centre (centre of origin) of G. orientalis, although both G. orientalis and G. officinalis can be found in this region. In this study, the diversity of these two Galega species in Caucasus was investigated to test the hypothesis that in this region G. orientalis is more diverse than G. officinalis. The amplified fragment length polymorphism fingerprinting performed here showed that the populations of G. orientalis and R. galegae bv. orientalis are more diverse than those of G. officinalis and R. galegae bv. officinalis, respectively. These results support the centre of origin status of Caucasus for G. orientalis at a genetic level. Analysis of the symbiosis-related plant genes NORK and Nfr5 reveals remarkable diversity within the Nfr5 sequence, although no evidence of adaptive evolution could be found.


Asunto(s)
Galega/genética , Variación Genética , Genoma de Planta , Filogenia , Simbiosis/genética , Secuencia de Aminoácidos , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , ADN de Plantas/genética , Galega/microbiología , Datos de Secuencia Molecular , Rhizobium/fisiología , Federación de Rusia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA