Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 11: 591, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425802

RESUMEN

BACKGROUND: All current approved antipsychotic drugs against schizophrenia spectrum disorders share affinity for the dopamine receptor (D2R). However, up to one-third of these patients respond insufficiently, and in some cases, side-effects outweigh symptom reduction. Previous data have suggested that a subgroup of antipsychotic-naïve patients will respond to serotonin 2A receptor (2AR) blockade. AIMS: This investigator-initiated, translational, proof-of-concept study has overall two aims; 1) To test the clinical effectiveness of monotherapy with the newly approved drug against Parkinson's disease psychosis, pimavanserin, in antipsychotic-free patients with first-episode schizophrenia spectrum disorders; 2) To characterize the neurobiological profile of responders to pimavaserin. MATERIALS AND EQUIPMENT: Forty patients will be enrolled in this 6-week open label, one-armed trial with the selective serotonin 2AR antagonist (pimavanserin 34 mg/day). At baseline, patients will undergo: positron emission tomography (PET) imaging of the serotonin 2AR using the radioligand [¹¹C]Cimbi-36; structural magnetic resonance imaging (MRI); MR spectroscopy of cerebral glutamate levels and diffusion tensor imaging; cognitive and psychopathological examinations; electrocardiogram, and blood sampling for genetic- and metabolic analyses. OUTCOME MEASURES: The primary clinical endpoint will be reduction in the Positive and Negative Syndrome Scale (PANSS) positive score. Secondary clinical endpoints comprise multiple clinical ratings (positive and negative symptoms, depressive-, obsessive-compulsive symptoms, quality of life, social functioning, sexual functioning, and side-effects). PET, MRI, and cognitive parameters will be used for in-depth neuropsychiatric characterization of pimavanserin response. ANTICIPATED RESULTS: Clinically, we expect pimavanserin to reduce psychotic symptoms with similar effect as observed with conventional antipsychotics, for which we have comparable historical data. We expect pimavanserin to induce minimal side-effects. Neurobiologically, we expect psychotic symptom reduction to be most prominent in patients with low frontal serotonin 2AR binding potential at baseline. Potential pro-cognitive and brain structural effects of pimavanserin will be explored. PERSPECTIVES: Sub-Sero will provide unique information about the role serotonin 2AR in antipsychotic-free, first-episode psychosis. If successful, Sub-Sero will aid identification of a "serotonergic subtype" of schizophrenia spectrum patients, thereby promoting development of precision medicine in clinical psychiatry. CLINICAL TRIAL REGISTRATION: ClinicalTrials, identifier NCT03994965.

2.
J Parkinsons Dis ; 9(2): 301-313, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30829619

RESUMEN

BACKGROUND: Intraputamenal glial cell line-derived neurotrophic factor (GDNF), administered every 4 weeks to patients with moderately advanced Parkinson's disease, did not show significant clinical improvements against placebo at 40 weeks, although it significantly increased [18F]DOPA uptake throughout the entire putamen. OBJECTIVE: This open-label extension study explored the effects of continued (prior GDNF patients) or new (prior placebo patients) exposure to GDNF for another 40 weeks. METHODS: Using the infusion protocol of the parent study, all patients received GDNF without disclosing prior treatment allocations (GDNF or placebo). The primary outcome was the percentage change from baseline to Week 80 in the OFF state Unified Parkinson's Disease Rating Scale (UPDRS) motor score. RESULTS: All 41 parent study participants were enrolled. The primary outcome decreased by 26.7±20.7% in patients on GDNF for 80 weeks (GDNF/GDNF; N = 21) and 27.6±23.6% in patients on placebo for 40 weeks followed by GDNF for 40 weeks (placebo/GDNF, N = 20; least squares mean difference: 0.4%, 95% CI: -13.9, 14.6, p = 0.96). Secondary endpoints did not show significant differences between the groups at Week 80 either. Prespecified comparisons between GDNF/GDNF at Week 80 and placebo/GDNF at Week 40 showed significant differences for mean OFF state UPDRS motor (-9.6±6.7 vs. -3.8±4.2 points, p = 0.0108) and activities of daily living score (-6.9±5.5 vs. -1.0±3.7 points, p = 0.0003). No treatment-emergent safety concerns were identified. CONCLUSIONS: The aggregate study results, from the parent and open-label extension suggest that future testing with GDNF will likely require an 80- rather than a 40-week randomized treatment period and/or a higher dose.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Putamen/diagnóstico por imagen , Antiparkinsonianos/uso terapéutico , Dihidroxifenilalanina/análogos & derivados , Femenino , Radioisótopos de Flúor , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones , Putamen/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Brain ; 142(3): 512-525, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808022

RESUMEN

We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35-75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2-3 and Unified Parkinson's Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: -4.9%, 95% CI: -16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Adulto , Anciano , Método Doble Ciego , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Bombas de Infusión Implantables , Masculino , Persona de Mediana Edad , Neuroglía/metabolismo , Efecto Placebo , Resultado del Tratamiento
4.
Arch Toxicol ; 92(7): 2353-2367, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29785638

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) has demonstrated neurorestorative and neuroprotective effects in rodent and nonhuman primate models of Parkinson's disease. However, continuous intraputamenal infusion of GDNF (100 µg/day) resulted in multifocal cerebellar Purkinje cell loss in a 6-month toxicity study in rhesus monkeys. It was hypothesized that continuous leakage of GDNF into the cerebrospinal fluid compartment during the infusions led to down-regulation of GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF then mediated the observed cerebellar lesions. Here we present the results of a 9-month toxicity study in which rhesus monkeys received intermittent intraputamenal infusions via convection-enhanced delivery. Animals were treated with GDNF (87.1 µg; N = 14) or vehicle (N = 6) once every 4 weeks for a total of 40 weeks (11 treatments). Four of the GDNF-treated animals were utilized in a satellite study assessing the impact of concomitant catheter repositioning prior to treatment. In the main study, eight animals (5 GDNF, 3 control) were euthanized at the end of the treatment period, along with the four satellite study animals, while the remaining eight animals (5 GDNF, 3 control) were euthanized at the end of a 12-week recovery period. There were no GDNF-related adverse effects and in particular, no GDNF-related microscopic findings in the brain, spinal cord, dorsal root ganglia, or trigeminal ganglia. Therefore, 87.1 µg/4 weeks is considered the no observed adverse effect level for GDNF in rhesus monkeys receiving intermittent, convection-enhanced delivery of GDNF for 9 months.


Asunto(s)
Cerebelo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/toxicidad , Fármacos Neuroprotectores/toxicidad , Putamen/efectos de los fármacos , Animales , Convección , Esquema de Medicación , Sistemas de Liberación de Medicamentos/instrumentación , Evaluación Preclínica de Medicamentos , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Bombas de Infusión Implantables , Macaca mulatta , Masculino , Fármacos Neuroprotectores/administración & dosificación , Nivel sin Efectos Adversos Observados , Pruebas de Toxicidad Crónica
5.
Neurotoxicology ; 52: 46-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26535469

RESUMEN

Recombinant-methionyl human glial cell line-derived neurotrophic factor (GDNF) is known for its neurorestorative and neuroprotective effects in rodent and primate models of Parkinson's disease (PD). When administered locally into the putamen of Parkinsonian subjects, early clinical studies showed its potential promise as a disease-modifying agent. However, the development of GDNF for the treatment of PD has been significantly clouded by findings of cerebellar toxicity after continuous intraputamenal high-dose administration in a 6-month treatment/3-month recovery toxicology study in rhesus monkeys. Specifically, multifocal cerebellar Purkinje cell loss affecting 1-21% of the cerebellar cortex was observed in 4 of 15 (26.7%; 95% confidence interval [CI]: 10.5-52.4%) animals treated at the highest dose level tested (3000µg/month). No cerebellar toxicity was observed at lower doses (450 and 900µg/month) in the same study, or at similar or higher doses (up to 10,000µg/month) in subchronic or chronic toxicology studies testing intermittent intracerebroventricular administration. While seemingly associated with the use of GDNF, the pathogenesis of the cerebellar lesions has not been fully understood to date. This review integrates available information to evaluate potential pathogenic mechanisms and provide a consolidated assessment of the findings. While other explanations are considered, the existing evidence is most consistent with the hypothesis that leakage of GDNF into cerebrospinal fluid during chronic infusions into the putamen down-regulates GDNF receptors on Purkinje cells, and that subsequent acute withdrawal of GDNF generates the observed lesions. The implications of these findings for clinical studies with GDNF are discussed.


Asunto(s)
Cerebelo/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/efectos adversos , Animales , Cerebelo/patología , Cerebelo/fisiopatología , Relación Dosis-Respuesta a Droga , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Humanos , Infusiones Intraventriculares , Microinyecciones , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Putamen/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...