Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38470729

RESUMEN

Metal-organic frameworks and supramolecular metal-organic frameworks (SMOFs) exhibit great potential for a broad range of applications taking advantage of the high surface area and pore sizes and tunable chemistry. In particular, metalloporphyrin-based MOFs and SMOFs are becoming of great importance in many fields due to the bioessential functions of these macrocycles that are being mimicked. On the other hand, during the last years, proton-conducting materials have aroused much interest, and those presenting high conductivity values are potential candidates to play a key role in some solid-state electrochemical devices such as batteries and fuel cells. In this way, using metalloporphyrins as building units we have obtained a new crystalline material with formula [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O, where bipy is 4,4'-bipyidine and TPPS4- is the meso-tetra(4-sulfonatephenyl) porphyrin. The crystal structure shows a zig-zag water chain along the [100] direction located between the sulfonate groups of the porphyrin. Taking into account those structural features, the compound was tested for proton conduction by complex electrochemical impedance spectroscopy (EIS). The as-obtained conductivity is 1 × 10-2 S·cm-1 at 40 °C and 98% relative humidity, which is a remarkably high value.

2.
Gels ; 9(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998999

RESUMEN

This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 µm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir's model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L-1, 86 ± 6 mg L-1, and 127 ± 4 mg L-1, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.

3.
ACS Appl Mater Interfaces ; 15(27): 32301-32312, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37379238

RESUMEN

Renewable energy sources require efficient energy storage systems. Lithium-ion batteries stand out among those systems, but safety and cycling stability problems still need to be improved. This can be achieved by the implementation of solid polymer electrolytes (SPE) instead of the typically used separator/electrolyte system. Thus, ternary SPEs have been developed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene), P(VDF-TrFE-CFE) as host polymers, clinoptilolite (CPT) zeolite added to stabilize the battery cycling performance, and ionic liquids (ILs) (1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN])), 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([PMPyr][TFSI]) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), incorporated to increase the ionic conductivity. The samples were processed by doctor blade with solvent evaporation at 160 °C. The nature of the polymer matrix and fillers affect the morphology and mechanical properties of the samples and play an important role in electrochemical parameters such as ionic conductivity value, electrochemical window stability, and lithium-transference number. The best ionic conductivity (4.2 × 10-5 S cm-1) and lithium transference number (0.59) were obtained for the PVDF-HFP-CPT-[PMPyr][TFSI] sample. Charge-discharge battery tests at C/10 showed excellent battery performance with values of 150 mAh g-1 after 50 cycles, regardless of the polymer matrix and IL used. In the rate performance tests, the best SPE was the one based on the P(VDF-TrFE-CFE) host polymer, with a discharge value at C-rate of 98.7 mAh g-1, as it promoted ionic dissociation. This study proves for the first time the suitability of P(VDF-TrFE-CFE) as SPE in lithium-ion batteries, showing the relevance of the proper selection of the polymer matrix, IL type, and lithium salt in the formulation of the ternary SPE, in order to optimize solid-state battery performance. In particular, the enhancement of the ionic conductivity provided by the IL and the effect of the high dielectric constant polymer P(VDF-TrFE-CFE) in improving battery cyclability in a wide range of discharge rates must be highlighted.

4.
ACS Appl Energy Mater ; 6(10): 5239-5248, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234969

RESUMEN

Solid polymer electrolytes (SPEs) will allow improving safety and durability in next-generation solid-state lithium-ion batteries (LIBs). Within the SPE class, ternary composites are a suitable approach as they provide high room-temperature ionic conductivity and excellent cycling and electrochemical stability. In this work, ternary SPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by solvent evaporation at different temperatures (room temperature, 80, 120, and 160 °C). Solvent evaporation temperature affects the morphology, degree of crystallinity, and mechanical properties of the samples as well as the ionic conductivity and lithium transference number. The highest ionic conductivity (1.2 × 10-4 S·cm-1) and lithium transference number (0.66) have been obtained for the SPE prepared at room temperature and 160 °C, respectively. Charge-discharge battery tests show the highest value of discharge capacity of 149 and 136 mAh·g-1 at C/10 and C/2 rates, respectively, for the SPE prepared at 160 °C. We conclude that the fine control of the solvent evaporation temperature during the preparation of the SPE allows us to optimize solid-state battery performance.

5.
ACS Appl Polym Mater ; 4(8): 5909-5919, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36568737

RESUMEN

Solid polymer electrolytes (SPEs) are required to improve battery safety through the elimination of the liquid electrolyte solution in current batteries. This work is focused on the development of a hybrid SPE based on poly(vinylidene fluoride), PVDF, and 1-butyl-3-methylimidazolium cobalt(II) isothiocyanate, [BMIM]2[(SCN)4Co] magnetic ionic liquid (MIL), and its battery cycling behavior at room temperature. The addition of MIL in filler contents up to 40 wt % to the PVDF matrix does not influence the compact morphology of the samples obtained by solvent casting. The polar ß-phase of PVDF increases with increasing MIL content, whereas the degree of crystallinity, thermal degradation temperature, and mechanical properties of the MIL/PVDF blends decrease with increasing MIL content. The ionic conductivity of the MIL/PVDF blends increases both with temperature and MIL content, showing the highest ionic conductivity of 7 × 10-4 mS cm-1 at room temperature for the MIL/PVDF blend with 40 wt % of MIL. The cathodic half-cells prepared with this blend as SPE show good reversibility and excellent cycling behavior at different C-rates, with a discharge capacity of 80 mAh g-1 at a C/10-rate with a Coulombic efficiency of 99%. The developed magnetic SPE, with excellent performance at room temperature, shows potential for the implementation of sustainable lithium-ion batteries, which can be further tuned by the application of an external magnetic field.

6.
Front Chem ; 10: 995063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186579

RESUMEN

This review focuses on the combination of metal-organic frameworks (MOFs) and ionic liquids (ILs) to obtain composite materials to be used as solid electrolytes in metal-ion battery applications. Benefiting from the controllable chemical composition, tunable pore structure and surface functionality, MOFs offer great opportunities for synthesizing high-performance electrolytes. Moreover, the encapsulation of ILs into porous materials can provide environmentally benign solid-state electrolytes for electrochemical devices. Due to the versatility of MOF-based materials, in this review we also explore their use as anodes and cathodes in Li- and Na-ion batteries. Finally, solid IL@MOF electrolytes and their implementation into Li and Na batteries have been analyzed, as well as the design and advanced manufacturing of solid IL@MOF electrolytes embedded on polymeric matrices.

7.
ACS Appl Mater Interfaces ; 14(13): 15494-15503, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35324148

RESUMEN

Materials sustainability is becoming increasingly relevant in every developed technology and, consequently, environmentally friendly solid polymer electrolytes (SPEs) based on gellan gum and different quantities of ionic liquid (IL) 1-ethyl-3-methyl-imidazolium-thiocyanate [Emim][SCN] have been prepared and applied in electrochromic devices (ECDs). The addition of the IL does not affect the crystalline phase of gellan gum, and the samples show a compact morphology, surface uniformity, no phase separation, and good distribution of the IL within the carrageenan matrix. The developed SPE are thermally stable up to ∼100 °C and show suitable mechanical properties. The most concentrated sample (39 wt % IL content) reaches a maximum ionic conductivity value of 6.0 × 10-3 S cm-1 and 1.8 × 10-2 S cm-1 at 30 and 90 °C, respectively. The electrochromic device (ECD) was fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as working electrode and the developed SPE was compared with an aqueous 0.1 M KNO3 solution. The electrochromic performance of the electrolyte was assessed in terms of spectroelectrochemistry, demonstrating a fully flexible ECD operating at voltages below 1.0 V. This novel electrolyte opens the door to the preparation of high performance sustainable ECD.

8.
ACS Appl Mater Interfaces ; 13(41): 48889-48900, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34636238

RESUMEN

The demand for more efficient energy storage devices has led to the exponential growth of lithium-ion batteries. To overcome the limitations of these systems in terms of safety and to reduce environmental impact, solid-state technology emerges as a suitable approach. This work reports on a three-component solid polymer electrolyte system based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), the ionic liquid 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), and clinoptilolite zeolite (CPT). The influences of the preparation method and of the dopants on the electrolyte stability, ionic conductivity, and battery performance were studied. The developed electrolytes show an improved room temperature ionic conductivity (1.9 × 10-4 S cm-1), thermal stability (up to 300 °C), and mechanical stability. The corresponding batteries exhibit an outstanding room temperature performance of 160.3 mAh g-1 at a C/15-rate, with a capacity retention of 76% after 50 cycles. These results represent a step forward in a promising technology aiming the widespread implementation of solid-state batteries.

9.
ChemSusChem ; 14(14): 2892-2901, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-33829652

RESUMEN

Composites based on chitin (CH) biopolymer and metal-organic framework (MOF) microporous nanoparticles have been developed as broad-scope pollutant absorbent. Detailed characterization of the CH/MOF composites revealed that the MOF nanoparticles interacted through electrostatic forces with the CH matrix, inducing compartmentalization of the CH macropores that led to an overall surface area increase in the composites. This created a micro-, meso-, and macroporous structure that efficiently retained pollutants with a broad spectrum of different chemical natures, charges, and sizes. The unique prospect of this approach is the combination of the chemical diversity of MOFs with the simple processability and biocompatibility of CH that opens application fields beyond water remediation.

10.
Chemistry ; 26(61): 13861-13872, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32557884

RESUMEN

Acute CrVI water pollution due to anthropogenic activities is an increasing worldwide concern. The high toxicity and mobility of CrVI makes it necessary to develop dual adsorbent/ion-reductive materials that are able to capture CrVI and transform it efficiently into the less hazardous CrIII . An accurate description of chromium speciation at the adsorbent/ion-reductive matrix is key to assessing whether CrVI is completely reduced to CrIII , or if its incomplete transformation has led to the stabilization of highly reactive, transient CrV species within the material. With this goal in mind, a dual ultraviolet-visible and electron paramagnetic spectroscopy approach has been applied to determine the chromium speciation within zirconium-based metal-organic frameworks (MOFs). Our findings point out that the generation of defects at Zr-MOFs boosts CrVI adsorption, whilst the presence of reductive groups on the organic linkers play a key role in stabilizing it as isolated and/or clustered CrIII ions.

11.
J Inorg Biochem ; 205: 110977, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31926376

RESUMEN

Metal-Organic Frameworks (MOFs) are porous coordination networks assembled through metal complexes with organic linkers. Due to their chemical versatility, these materials are being investigated for various applications including gas storage and separation, biomedicine and catalysis. The aim of this work is the encapsulation of the model ß-alanine amino-acid in the nanostructured zirconium-based MOF (UiO-66) which contains the ligand H2BDC (1,4-benzenedicaboxylic acid). Additionally, ligand functionalization (by using H2doBDC (2,5-dihydroxy-1,4-benzenedicarboxylic acid) and defect engineering have been carried out to produce UiO-66 derivatives, in order to modify the host-guest interactions, and hence study their influence on the ß-alanine loading capacity and release kinetics. The as-obtained materials have been characterized by X-ray diffraction (XRD), X-ray thermo diffraction (TDX), infrared (IR) spectroscopy, thermogravimetric analysis-differential scanning calorimetry (TG-DSC) and elemental analysis (EA). Morphology of nanoscale MOFs has been explored by transition electron microscopy (TEM). Adsorption isotherms have been constructed, and the concentration of ß-alanine in the post-adsorption solution (supernatant) has been quantified by high performance liquid chromatography coupled with mass spectroscopy (HPLC-MS) and EA. Adsorption capacity values indicate that the presence of hydroxyl groups at the organic linker H2doBDC enhances the host-guess affinity between the framework and the adsorbate ß-alanine. The influence of defect engineering, on the adsorption however, is not that obvious. On the other hand, desorption experiments show similar behaviour for H2doBDC-based derivatives. An adsorption mechanism has been proposed consisting of a combination of host-guest interaction at low concentrations, and covalent anchoring/ligand displacement by ß-alanine at the inorganic clusters.


Asunto(s)
Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Circonio/química , beta-Alanina/química , Catálisis
12.
IUCrJ ; 5(Pt 5): 559-568, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30224959

RESUMEN

Heterogeneous catalysts are of great interest in many industrial processes for environmental reasons and, during recent years, a great effort has been devoted to obtain metal-organic frameworks (MOFs) with improved catalytic behaviour. Few supramolecular metal-organic frameworks (SMOFs) are stable under ambient conditions and those with anchored catalysts exhibit favourable properties. However, this paper presents an innovative approach that consists of using metal nodes as both structural synthons and catalysts. Regarding the latter, metalloporphyrins are suitable candidates to play both roles simultaneously. In fact, there are a number of papers that report coordination compounds based on metalloporphyrins exhibiting these features. Thus, the aim of this bioinspired work was to obtain stable SMOFs (at room temperature) based on metallo-porphyrins and explore their catalytic activity. This work reports the environmentally friendly microwave-assisted synthesis and characterization of the compound [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O (TPPS = meso-tetra-phenyl-porphine-4,4',4'',4'''-tetra-sulfonic acid and bipy = 4,4'-bi-pyridine). This compound is the first example of an MnTPPS-based SMOF, as far as we are aware, and has been structurally and thermally characterized through single-crystal X-ray diffraction, IR spectroscopy, thermogravimetry and transmission electron microscopy. Additionally, this work explores not only the catalytic activity of this compound but also of the compounds µ-O-[FeTCPP]2·16DMF and [CoTPPS0.5(bipy)(H2O)2]·6H2O. The structural features of these supra-molecular materials, with accessible networks and high thermal stability, are responsible for their excellent behaviour as heterogeneous catalysts for different oxidation, condensation (aldol and Knoevenagel) and one-pot cascade reactions.

13.
Dalton Trans ; 47(3): 958-970, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29260169

RESUMEN

Two closed and one open structural forms of the interpenetrated [Cu2(Tae)(Bpa)2](NO3)2·nH2O (H2Tae = 1,1,2,2-tetraacetylethane, Bpa = 1,2-bis(4-pyridyl)ethane) cationic coordination polymer have been synthesized. Three crystallographically related interpenetrated "ths" cationic nets encapsulate water molecules and nitrate anions giving rise to the closed structural forms of [Cu2(Tae)(Bpa)2](NO3)2·nH2O. Depending on the location of water molecules and nitrate groups, two different closed forms with 5.5 and 3.6 crystallization water molecules have been obtained. The thermal activation of the closed structures gives rise to a 29% expansion of the unit cell. This closed to open transformation is reversible, and is triggered by the loss or uptake of solvent. The high pressure gas adsorption experiments show similar selectivity values towards CO2 for CO2/CH4 mixtures to that showed by some metal organic frameworks without unsaturated metal sites, and isosteric heats for CO2 adsorption similar to that for the HKUST-1 compound.

14.
Molecules ; 20(4): 6683-99, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25884550

RESUMEN

Synthetic metalloporphyrin complexes are often used as analogues of natural systems, and they can be used for the preparation of new Solid Coordination Frameworks (SCFs). In this work, a series of six metalloporphyrinic compounds constructed from different meso substituted metalloporphyrins (phenyl, carboxyphenyl and sulfonatophenyl) have been structurally characterized by means of single crystal X-ray diffraction, IR spectroscopy and elemental analysis. The compounds were classified considering the dimensionality of the crystal array, referred just to coordination bonds, into 0D, 1D and 2D compounds. This way, the structural features and relationships of those crystal structures were analyzed, in order to extract conclusions not only about the dimensionality of the networks but also about possible applications of the as-obtained compounds, focusing the interest on the interactions of coordination and crystallization molecules. These interactions provide the coordination bonds and the cohesion forces which produce SCFs with different dimensionalities.


Asunto(s)
Complejos de Coordinación/química , Cristalización , Catálisis , Complejos de Coordinación/metabolismo , Cristalización/métodos , Cristalografía por Rayos X , Enlace de Hidrógeno , Metaloporfirinas/química , Metaloporfirinas/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Análisis Espectral , Termogravimetría
15.
Dalton Trans ; 44(1): 213-22, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25371170

RESUMEN

During the past few years, a great deal of effort has been devoted to the anchoring of catalysts into solid coordination networks in order to achieve heterogeneous catalysts. In this sense, an innovative approach consists in using the coordination-network synthons both as structural units and as catalysts. Regarding the latter, metalloporphyrins are suitable candidates for synthons. In fact, a few studies report on coordination compounds based on metalloporphyrins exhibiting these features. On the other hand, highly distorted di-iron oxo dimers containing electron withdrawing groups rank amongst the most effective catalyst models. Thus, the aim of this work was to obtain coordination networks based on iron porphyrins exhibiting those characteristics. In this way, this work reports on the synthesis and characterisation of the µ-O-[FeTCPP]2·16DMF compound (H2TCPP = meso-tetra(4-carboxyphenyl)porphyrin, DMF = N,N-dimethylformamide). This compound is the first example of a µ-oxo dimer with TCPP. The inter-dimer connections give rise to a laminar structure. The structural, spectroscopic and magnetic properties of this compound are consistent with the presence of high-spin Fe(III) ions, exhibiting a strong antiferromagnetic coupling in the µ-oxo dimer (J = -132 cm(-1)). An unusual superhyperfine structure has been observed in EPR that is related to the high accessible volume of the compound. The structural features of the dimers and the accessible network are responsible for the excellent behaviour of the compound as a heterogeneous catalyst for different oxidations of alcohols. Therefore, this compound is one of the very few examples of metalloporphyrins where structural units act as catalysts.

16.
Inorg Chem ; 52(14): 8074-81, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23799787

RESUMEN

Compound ([FeTPPbipy](•))n (TPP = meso-tetraphenylporphyrin and bipy = 4,4'-bipyridine) is the first example of a Fe-TPP-bipy coordination network, and it consists of 1D polymers packed through face-to-face and edge-to-face π-π interactions. The compound has been investigated by means of X-ray diffraction, IR, Mössbauer, UV-visible, and EPR spectroscopies, thermogravimetry, magnetic susceptibility measurements, and quantum-mechanical density functional theory (DFT) and time-dependent DFT calculations. The chemical formula for this compound can be confusing because it is compatible with Fe(II) and TPP(2-) anions. However, the spectroscopic and magnetic properties of this compound are consistent with the presence of low-spin Fe(III) ions and [FeTPPbipy](•) neutral radicals. These radicals are proposed to be formed by the reduction of metalloporphyrin, and the quantum-mechanical calculations are consistent with the fact that the acquired electrons are located on the phenyl groups of TPP.


Asunto(s)
Compuestos de Hierro/química , Metaloporfirinas/química , Porfirinas/química , Electrones , Modelos Moleculares , Piridinas/química , Teoría Cuántica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...