Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(20): 13624-13641, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37152564

RESUMEN

A magnesium-decorated graphene quantum dot (C24H12-Mg) surface has been examined theoretically using density functional theory (DFT) computations at the ωB97XD/6-311++G(2p,2d) level of theory to determine its sensing capability toward XH3 gases, where X = As, N and P, in four different phases: gas, benzene solvent, ethanol solvent and water. This research was carried out in different phases in order to predict the best possible phase for the adsorption of the toxic gases. Analysis of the electronic properties shows that in the different phases the energy gap follows the order NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The results obtained from the adsorption studies show that all the calculated adsorption energies are negative, indicating that the nature of the adsorption is chemisorption. The adsorption energies can be arranged in an increasing trend of NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The best adsorption performance was noted in the gas phase compared to the other studied counterparts. The interaction between the adsorbed gases and the surfaces shows a non-covalent interaction nature, as confirmed by the quantum theory of atoms-in-molecules (QTAIM) and non-covalent interactions (NCI) analysis. The overall results suggest that we can infer that the surface of the magnesium-decorated graphene quantum dot C24H12-Mg is more efficient for sensing the gas AsH3 than PH3 and NH3.

2.
ACS Omega ; 8(11): 10006-10021, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969422

RESUMEN

Theoretical studies on the adsorption, sensibility, and reactivity of a boron nitride nanocage decorated with Au, Cu, Ni, Os, Pt, and Zn metals as a biosensor material were carried out for the adsorption of carboplatin by applying the density functional theory computation at the B3LYP-GD3BJ/def2svp level of theory. All the optimized structures, as well as the calculations as regards the studied objective including electronic properties, geometry optimization parameters, adsorption energy studies, natural bond orbital analysis, topology studies, sensor mechanistic parameters, and thermodynamic properties (ΔG and ΔH), were investigated herein. As a result, the noticeable change in the energy gap of the studied surfaces when interacting with carboplatin accounted for the surfaces' reactivity, stability, conductivity, work function, and overall adsorption ability, implying that the studied decorated surfaces are good sensor materials for sensing carboplatin. Furthermore, the negative adsorption energies obtained for interacting surfaces decorated with Cu, Ni, Os, and Zn suggest that the surface has a superior ability to sense carboplatin as chemisorption was seen. Substantially, the geometric short adsorption bond length after adsorption, thermodynamically spontaneous reactions, and acceptable sensor mechanism results demonstrate that the investigated surfaces have strong sensing characteristics for sensing carboplatin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...