Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 13(1): 5178, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997628

RESUMEN

Accurately quantifying swelling of alloys that have undergone irradiation is essential for understanding alloy performance in a nuclear reactor and critical for the safe and reliable operation of reactor facilities. However, typical practice is for radiation-induced defects in electron microscopy images of alloys to be manually quantified by domain-expert researchers. Here, we employ an end-to-end deep learning approach using the Mask Regional Convolutional Neural Network (Mask R-CNN) model to detect and quantify nanoscale cavities in irradiated alloys. We have assembled a database of labeled cavity images which includes 400 images, > 34 k discrete cavities, and numerous alloy compositions and irradiation conditions. We have evaluated both statistical (precision, recall, and F1 scores) and materials property-centric (cavity size, density, and swelling) metrics of model performance, and performed targeted analysis of materials swelling assessments. We find our model gives assessments of material swelling with an average (standard deviation) swelling mean absolute error based on random leave-out cross-validation of 0.30 (0.03) percent swelling. This result demonstrates our approach can accurately provide swelling metrics on a per-image and per-condition basis, which can provide helpful insight into material design (e.g., alloy refinement) and impact of service conditions (e.g., temperature, irradiation dose) on swelling. Finally, we find there are cases of test images with poor statistical metrics, but small errors in swelling, pointing to the need for moving beyond traditional classification-based metrics to evaluate object detection models in the context of materials domain applications.

3.
Microsc Microanal ; 26(2): 240-246, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32172720

RESUMEN

Complex material systems in which microstructure and microchemistry are nonuniformly dispersed require three-dimensional (3D) rendering(s) to provide an accurate determination of the physio-chemical nature of the system. Current scanning transmission electron microscope (STEM)-based tomography techniques enable 3D visualization but can be time-consuming, so only select systems or regions are analyzed in this manner. Here, it is presented that through high-efficiency multidimensional STEM acquisition and reconstruction, complex point cloud-like microstructural features can quickly and effectively be reconstructed in 3D. The proposed set of techniques is demonstrated, analyzed, and verified for a high-chromium steel with heterogeneously situated features induced using high-energy neutron bombardment.

4.
Sci Rep ; 6: 20155, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26822012

RESUMEN

Concrete, used in the construction of nuclear power plants (NPPs), may be exposed to radiation emanating from the reactor core. Until recently, concrete has been assumed immune to radiation exposure. Direct evidence acquired on Ar(+)-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. More specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica. Calcite however, shows little change in dissolution rate - although its density noted to reduce by ≈9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral's atomic network that is characterized by the number of topological constraints (nc) that are imposed on the atoms in the network. The outcomes have major implications on the durability of concrete structural elements formed with calcite or quartz bearing aggregates in nuclear power plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA