Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Hum Genomics ; 17(1): 106, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007520

RESUMEN

BACKGROUND: Past studies suggest that there are changes in peripheral blood cell gene expression in response to ischaemic stroke; however, the specific changes which occur during the acute phase are poorly characterised. The current study aimed to identify peripheral blood cell genes specifically associated with the early response to ischaemic stroke using whole blood samples collected from participants diagnosed with ischaemic stroke (n = 29) or stroke mimics (n = 27) following emergency presentation to hospital. Long non-coding RNA (lncRNA), mRNA and micro-RNA (miRNA) abundance was measured by RNA-seq, and the consensusDE package was used to identify genes which were differentially expressed between groups. A sensitivity analysis excluding two participants with metastatic disease was also conducted. RESULTS: The mean time from symptom onset to blood collection was 2.6 h. Most strokes were mild (median NIH stroke scale score 2.0). Ten mRNAs (all down-regulated in samples provided by patients experiencing ischaemic stroke) and 30 miRNAs (14 over-expressed and 16 under-expressed in participants with ischaemic stroke) were significantly different between groups in the whole cohort and sensitivity analyses. No significant over-representation of gene ontology categories by the differentially expressed genes was observed. Random forest analysis suggested a panel of differentially expressed genes (ADGRG7 and miRNAs 96, 532, 6766, 6798 and 6804) as potential ischaemic stroke biomarkers, although modelling analyses demonstrated that these genes had poor diagnostic performance. CONCLUSIONS: This study provides evidence suggesting that the early response to minor ischaemic stroke is predominantly reflected by changes in the expression of miRNAs in peripheral blood cells. Further work in independent cohorts particularly in patients with more severe stroke is needed to validate these findings and investigate their clinical relevance.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/genética , Isquemia Encefálica/genética , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/complicaciones , MicroARNs/genética , Estudios de Casos y Controles , Expresión Génica
2.
Comput Struct Biotechnol J ; 21: 5028-5038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867967

RESUMEN

Cancer is a heterogeneous disease with a strong genetic component making it suitable for precision medicine approaches aimed at identifying the underlying molecular drivers within a tumour. Large scale population-level cancer sequencing consortia have identified many actionable mutations common across both cancer types and sub-types, resulting in an increasing number of successful precision medicine programs. Nonetheless, such approaches fail to consider the effects of mutations unique to an individual patient and may miss rare driver mutations, necessitating personalised approaches to driver-gene prioritisation. One approach is to quantify the functional importance of individual mutations in a single tumour based on how they affect the expression of genes in a gene interaction network (GIN). These GIN-based approaches can be broadly divided into those that utilise an existing reference GIN and those that construct de novo patient-specific GINs. These single-tumour approaches have several limitations that likely influence their results, such as use of reference cohort data, network choice, and approaches to mathematical approximation, and more research is required to evaluate the in vitro and in vivo applicability of their predictions. This review examines the current state of the art methods that identify driver genes in single tumours with a focus on GIN-based driver prioritisation.

3.
Gigascience ; 122023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36994871

RESUMEN

BACKGROUND: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.


Asunto(s)
Canidae , Genoma Mitocondrial , Lobos , Perros , Animales , Femenino , Epigenoma , Filogenia , Australia , Canidae/genética , Lobos/genética , Cromosomas
4.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747621

RESUMEN

Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings: We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions: These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.

5.
Front Immunol ; 13: 1047781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439147

RESUMEN

Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is a chronic, progressive, and growing worldwide health burden associated with mounting morbidity, mortality, and economic costs. Improvements in NTM-PD management are urgently needed, which requires a better understanding of fundamental immunopathology. Here, we examine temporal dynamics of the immune compartment during NTM-PD caused by Mycobacterium avium complex (MAC) and Mycobactereoides abscessus complex (MABS). We show that active MAC infection is characterized by elevated T cell immunoglobulin and mucin-domain containing-3 expression across multiple T cell subsets. In contrast, active MABS infection was characterized by increased expression of cytotoxic T-lymphocyte-associated protein 4. Patients who failed therapy closely mirrored the healthy individual immune phenotype, with circulating immune network appearing to 'ignore' infection in the lung. Interestingly, immune biosignatures were identified that could inform disease stage and infecting species with high accuracy. Additionally, programmed cell death protein 1 blockade rescued antigen-specific IFN-γ secretion in all disease stages except persistent infection, suggesting the potential to redeploy checkpoint blockade inhibitors for NTM-PD. Collectively, our results provide new insight into species-specific 'immune chatter' occurring during NTM-PD and provide new targets, processes and pathways for diagnostics, prognostics, and treatments needed for this emerging and difficult to treat disease.


Asunto(s)
Enfermedades del Sistema Inmune , Enfermedades Pulmonares , Infección por Mycobacterium avium-intracellulare , Humanos , Micobacterias no Tuberculosas , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Enfermedades Pulmonares/microbiología
6.
Cardiovasc Ther ; 2022: 5299370, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262119

RESUMEN

Background and Aims: The nacht domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is upregulated in human abdominal aortic aneurysm (AAA), but its pathogenic role is unclear. The aims of this study were firstly to examine whether the inflammasome was upregulated in a mouse model of AAA and secondly to test whether the inflammasome inhibitor colchicine limited AAA growth. Methods: AAA was induced in eight-week-old male C57BL6/J mice with topical application of elastase to the infrarenal aorta and oral 3-aminopropionitrile (E-BAPN). For aim one, inflammasome activation, abdominal aortic diameter, and rupture were compared between mice with AAA and sham controls. For aim two, 3 weeks after AAA induction, mice were randomly allocated to receive colchicine (n = 28, 0.2 mg/kg/d) or vehicle control (n = 29). The primary outcome was the rate of maximum aortic diameter increase measured by ultrasound over 13 weeks. Results: There was upregulation of NLRP3 markers interleukin- (IL-) 1ß (median, IQR; 15.67, 7.11-22.60 pg/mg protein versus 6.87, 4.54-11.60 pg/mg protein, p = .048) and caspase-1 (109, 83-155 relative luminosity units (RLU) versus 45, 38-65 RLU, p < .001) in AAA samples compared to controls. Aortic diameter increase over 80 days (mean difference, MD, 4.3 mm, 95% CI 3.3, 5.3, p < .001) was significantly greater in mice in which aneurysms were induced compared to sham controls. Colchicine did not significantly limit aortic diameter increase over 80 days (MD -0.1 mm, 95% CI -1.1, 0.86, p = .922). Conclusions: The inflammasome was activated in this mouse model of AAA; however, daily oral administration of colchicine did not limit AAA growth.


Asunto(s)
Aneurisma de la Aorta Abdominal , Animales , Masculino , Ratones , Aminopropionitrilo , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Caspasas , Colchicina/farmacología , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Leucina , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Elastasa Pancreática
7.
Parasit Vectors ; 15(1): 303, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030291

RESUMEN

BACKGROUND: Aedes albopictus is a highly invasive species and an important vector of dengue and chikungunya viruses. Indigenous to Southeast Asia, Ae. albopictus has successfully invaded every inhabited continent, except Antarctica, in the past 80 years. Vector surveillance and control at points of entry (PoE) is the most critical front line of defence against the introduction of Ae. albopictus to new areas. Identifying the pathways by which Ae. albopictus are introduced is the key to implementing effective vector surveillance to rapidly detect introductions and to eliminate them. METHODS: A literature review was conducted to identify studies and data sources reporting the known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal between 1940-2020. Studies and data sources reporting the first introduction of Ae. albopictus in a new country were selected for data extraction and analyses. RESULTS: Between 1940-2020, Ae. albopictus was reported via various dispersal pathways into 86 new countries. Two main dispersal pathways were identified: (1) at global and continental spatial scales, maritime sea transport was the main dispersal pathway for Ae. albopictus into new countries in the middle to late 20th Century, with ships carrying used tyres of particular importance during the 1980s and 1990s, and (2) at continental and national spatial scales, the passive transportation of Ae. albopictus in ground vehicles and to a lesser extent the trade of used tyres and maritime sea transport appear to be the major drivers of Ae. albopictus dispersal into new countries, especially in Europe. Finally, the dispersal pathways for the introduction and spread of Ae. albopictus in numerous countries remains unknown, especially from the 1990s onwards. CONCLUSIONS: This review identified the main known and suspected dispersal pathways of human-mediated Ae. albopictus dispersal leading to the first introduction of Ae. albopictus into new countries and highlighted gaps in our understanding of Ae. albopictus dispersal pathways. Relevant advances in vector surveillance and genomic tracking techniques are presented and discussed in the context of improving vector surveillance.


Asunto(s)
Aedes , Virus Chikungunya , Dengue , Animales , Humanos , Especies Introducidas , Mosquitos Vectores
8.
Proc Natl Acad Sci U S A ; 119(36): e2202795119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037362

RESUMEN

Parasitic helminth infections, while a major cause of neglected tropical disease burden, negatively correlate with the incidence of immune-mediated inflammatory diseases such as inflammatory bowel diseases (IBD). To evade expulsion, helminths have developed sophisticated mechanisms to regulate their host's immune responses. Controlled experimental human helminth infections have been assessed clinically for treating inflammatory conditions; however, such a radical therapeutic modality has challenges. An alternative approach is to harness the immunomodulatory properties within the worm's excretory-secretory (ES) complement, its secretome. Here, we report a biologics discovery and validation pipeline to generate and screen in vivo a recombinant cell-free secretome library of helminth-derived immunomodulatory proteins. We successfully expressed 78 recombinant ES proteins from gastrointestinal hookworms and screened the crude in vitro translation reactions for anti-IBD properties in a mouse model of acute colitis. After statistical filtering and ranking, 20 proteins conferred significant protection against various parameters of colitis. Lead candidates from distinct protein families, including annexins, transthyretins, nematode-specific retinol-binding proteins, and SCP/TAPS were identified. Representative proteins were produced in mammalian cells and further validated, including ex vivo suppression of inflammatory cytokine secretion by T cells from IBD patient colon biopsies. Proteins identified herein offer promise as novel, safe, and mechanistically differentiated biologics for treating the globally increasing burden of inflammatory diseases.


Asunto(s)
Antiinflamatorios , Productos Biológicos , Colitis , Proteínas del Helminto , Enfermedades Inflamatorias del Intestino , Animales , Antiinflamatorios/farmacología , Productos Biológicos/farmacología , Colitis/tratamiento farmacológico , Proteínas del Helminto/genética , Proteínas del Helminto/farmacología , Helmintos , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/parasitología , Ratones
9.
Front Med (Lausanne) ; 9: 806696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463004

RESUMEN

Precision medicine programs to identify clinically relevant genetic variation have been revolutionized by access to increasingly affordable high-throughput sequencing technologies. A decade of continual drops in per-base sequencing costs means it is now feasible to sequence an individual patient genome and interrogate all classes of genetic variation for < $1,000 USD. However, while advances in these technologies have greatly simplified the ability to obtain patient sequence information, the timely analysis and interpretation of variant information remains a challenge for the rollout of large-scale precision medicine programs. This review will examine the challenges and potential solutions that exist in identifying predictive genetic biomarkers and pharmacogenetic variants in a patient and discuss the larger bioinformatic challenges likely to emerge in the future. It will examine how both software and hardware development are aiming to overcome issues in short read mapping, variant detection and variant interpretation. It will discuss the current state of the art for genetic disease and the remaining challenges to overcome for complex disease. Success across all types of disease will require novel statistical models and software in order to ensure precision medicine programs realize their full potential now and into the future.

10.
Sci Adv ; 8(16): eabm5944, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35452284

RESUMEN

Dogs are uniquely associated with human dispersal and bring transformational insight into the domestication process. Dingoes represent an intriguing case within canine evolution being geographically isolated for thousands of years. Here, we present a high-quality de novo assembly of a pure dingo (CanFam_DDS). We identified large chromosomal differences relative to the current dog reference (CanFam3.1) and confirmed no expanded pancreatic amylase gene as found in breed dogs. Phylogenetic analyses using variant pairwise matrices show that the dingo is distinct from five breed dogs with 100% bootstrap support when using Greenland wolf as the outgroup. Functionally, we observe differences in methylation patterns between the dingo and German shepherd dog genomes and differences in serum biochemistry and microbiome makeup. Our results suggest that distinct demographic and environmental conditions have shaped the dingo genome. In contrast, artificial human selection has likely shaped the genomes of domestic breed dogs after divergence from the dingo.


Asunto(s)
Canidae , Lobos , Animales , Australia , Cruzamiento , Canidae/genética , Perros , Filogenia , Lobos/genética
11.
Nature ; 605(7909): 349-356, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477763

RESUMEN

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Asunto(s)
Mutación con Ganancia de Función , Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Animales , Autoinmunidad/genética , Linfocitos B , GMP Cíclico/análogos & derivados , Guanosina , Humanos , Lupus Eritematoso Sistémico/genética , Ratones , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
12.
Clin Microbiol Rev ; 34(4): e0034820, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494873

RESUMEN

About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.


Asunto(s)
Productos Biológicos , Enfermedades Transmisibles , Biodiversidad , Productos Biológicos/uso terapéutico , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/epidemiología , Humanos , Clima Tropical
13.
Vaccine ; 39(50): 7265-7276, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34420788

RESUMEN

Tuberculosis (TB) is the leading infectious cause of death globally. The only licensed TB vaccine, Bacille Calmette-Guérin (BCG), has low efficacy against TB in adults and is not recommended in people with impaired immunity. The incorporation of the Mycobacterium tuberculosis (Mtb) secretion system ESX-1 into BCG improves immunogenicity and protection against TB in animal models, which is associated with the secretion of the ESX-1-dependent protein ESAT-6. However, the resulting strain, BCG::ESX1Mtb, has been deemed unsafe as a human vaccine, due to prolonged persistence and increased virulence in immunocompromised mice. In this study, we describe a new recombinant BCG strain that uncouples the beneficial aspects of ESAT-6 secretion from the detrimental ESX-1effects on virulence and persistence. The strain was constructed by fusing the ESAT-6-encoding gene esxA to the general secretion signal for the mycobacterial type VII secretion pathway protein PE25. This new strain, BCG::ESAT6-PE25SS, secretes full-length ESAT-6 via the ESX-5 secretion system, which in contrast to ESX-1 is also present in BCG. In vivo testing revealed that ESX-5-targeted ESAT-6 export, induces cytosolic contact, generates ESAT-6-specific T cells and enhances the protective efficacy against TB disease, but is associated with low virulence and reduced persistence in immunocompetent and immunocompromised mice. Additionally, compared to BCG::ESX1Mtb and parental BCG, mucosal administration of BCG::ESAT6-PE25SS is associated with more rapid clearance from the lung. These results warrant further studies to evaluate BCG::ESAT6-PE25SS as a potential live attenuated vaccine candidate for TB.


Asunto(s)
Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Animales , Antígenos Bacterianos/genética , Vacuna BCG , Proteínas Bacterianas/genética , Ratones , Tuberculosis/prevención & control , Virulencia
14.
PeerJ ; 9: e11774, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34316407

RESUMEN

BACKGROUND: Pharmacogenetic variation is important to drug responses through diverse and complex mechanisms. Predictions of the functional impact of missense pharmacogenetic variants primarily rely on the degree of sequence conservation between species as a primary discriminator. However, idiosyncratic or off-target drug-variant interactions sometimes involve effects that are peripheral or accessory to the central systems in which a gene functions. Given the importance of sequence conservation to functional prediction tools-these idiosyncratic pharmacogenetic variants may violate the assumptions of predictive software commonly used to infer their effect. METHODS: Here we exhaustively assess the effectiveness of eleven missense mutation functional inference tools on all known pharmacogenetic missense variants contained in the Pharmacogenomics Knowledgebase (PharmGKB) repository. We categorize PharmGKB entries into sub-classes to catalog likely off-target interactions, such that we may compare predictions across different variant annotations. RESULTS: As previously demonstrated, functional inference tools perform variably across the complete set of PharmGKB variants, with large numbers of variants incorrectly classified as 'benign'. However, we find substantial differences amongst PharmGKB variant sub-classes, particularly in variants known to cause off-target, type B adverse drug reactions, that are largely unrelated to the main pharmacological action of the drug. Specifically, variants associated with off-target effects (hence referred to as off-target variants) were most often incorrectly classified as 'benign'. These results highlight the importance of understanding the underlying mechanism of pharmacogenetic variants and how variants associated with off-target effects will ultimately require new predictive algorithms. CONCLUSION: In this work we demonstrate that functional inference tools perform poorly on pharmacogenetic variants, particularly on subsets enriched for variants causing off-target, type B adverse drug reactions. We describe how to identify variants associated with off-target effects within PharmGKB in order to generate a training set of variants that is needed to develop new algorithms specifically for this class of variant. Development of such tools will lead to more accurate functional predictions and pave the way for the increased wide-spread adoption of pharmacogenetics in clinical practice.

15.
Animal Model Exp Med ; 4(2): 181-188, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34179725

RESUMEN

Tuberculosis (TB) is one of the deadliest infectious diseases in the world. The metabolic disease type 2 diabetes (T2D) significantly increases the risk of developing active TB. Effective new TB vaccine candidates and novel therapeutic interventions are required to meet the challenges of global TB eradication. Recent evidence suggests that the microbiota plays a significant role in how the host responds to infection, injury and neoplastic changes. Animal models that closely reflect human physiology are crucial in assessing new treatments and to decipher the underlying immunological defects responsible for increased TB susceptibility in comorbid patients. In this study, using a diet-induced murine T2D model that reflects the etiopathogenesis of clinical T2D and increased TB susceptibility, we investigated how the intestinal microbiota may impact the development of T2D, and how the gut microbial composition changes following a very low-dose aerosol infection with Mycobacterium tuberculosis (Mtb). Our data revealed a substantial intestinal microbiota dysbiosis in T2D mice compared to non-diabetic animals. The observed differences were comparable to previous clinical reports in TB patients, in which it was shown that Mtb infection causes rapid loss of microbial diversity. Furthermore, diversity index and principle component analyses demonstrated distinct clustering of Mtb-infected non-diabetic mice vs. Mtb-infected T2D mice. Our findings support a broad applicability of T2D mice as a tractable small animal model for studying distinct immune parameters, microbiota and the immune-metabolome of TB/T2D comorbidity. This model may also enable answers to be found to critical outstanding questions about targeted interventions of the gut microbiota and the gut-lung axis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbiota , Tuberculosis , Animales , Comorbilidad , Diabetes Mellitus Tipo 2/epidemiología , Modelos Animales de Enfermedad , Humanos , Metaboloma , Ratones , Tuberculosis/epidemiología
16.
Atherosclerosis ; 327: 39-48, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34038762

RESUMEN

BACKGROUND AND AIMS: Abdominal aortic aneurysm (AAA) is an important cause of death worldwide and has an estimated heritability between 70 and 77%. Genome-wide association studies (GWAS) are an established way to discover genetic risk variants. The aim of this study was to systematically review the findings and quality of previous AAA GWAS. METHODS: The Medline, PubMed, Web of Science and relevant genetic databases were searched to identify previous AAA GWAS. A framework was developed to grade the methodological quality of the GWAS. Data from included studies were extracted to assess methods and findings. RESULTS: Eight case-control studies were included. Thirty-three of the 38 total single nucleotide polymorphisms (SNPs) previously reported were associated with AAA diagnosis at genome-wide significance (p < 5.0 × 10-8). The CDKN2B antisense RNA-1 gene had the most significant association with AAA diagnosis (p = 6.94 × 10-29 and p = 1.54 × 10-33 for rs4007642 and rs10757274 respectively). Age, sex and smoking history were not reported for the complete cohort in any of the included studies, although five of the eight studies adjusted or matched for at least two confounding variables. All included studies had important design limitations including lack of sample size estimation, inconsistent case and control ascertainment and limited phenotyping of the AAAs. AAA growth was assessed in one GWAS, however, no significant associations with the reported SNPs were found. CONCLUSIONS: This systematic review identified 33 SNPs associated with AAA diagnosis at genome-wide significance previously validated in multiple cohorts. The association between SNPs and AAA growth was not adequately examined. Previous GWAS have a number of design limitations.


Asunto(s)
Aneurisma de la Aorta Abdominal , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo
17.
Int J Cancer ; 149(5): 1089-1099, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33821477

RESUMEN

Prostate cancer (PrCa) is highly heritable, and although rare variants contribute significantly to PrCa risk, few have been identified to date. Herein, whole-genome sequencing was performed in a large PrCa family featuring multiple affected relatives spanning several generations. A rare, predicted splice site EZH2 variant, rs78589034 (G > A), was identified as segregating with disease in all but two individuals in the family, one of whom was affected with lymphoma and bowel cancer and a female relative. This variant was significantly associated with disease risk in combined familial and sporadic PrCa datasets (n = 1551; odds ratio [OR] = 3.55, P = 1.20 × 10-5 ). Transcriptome analysis was performed on prostate tumour needle biopsies available for two rare variant carriers and two wild-type cases. Although no allele-dependent differences were detected in EZH2 transcripts, a distinct differential gene expression signature was observed when comparing prostate tissue from the rare variant carriers with the wild-type samples. The gene expression signature comprised known downstream targets of EZH2 and included the top-ranked genes, DUSP1, FOS, JUNB and EGR1, which were subsequently validated by qPCR. These data provide evidence that rs78589034 is associated with increased PrCa risk in Tasmanian men and further, that this variant may be associated with perturbed EZH2 function in prostate tissue. Disrupted EZH2 function is a driver of tumourigenesis in several cancers, including prostate, and is of significant interest as a therapeutic target.


Asunto(s)
Biomarcadores de Tumor/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/epidemiología , Transcriptoma , Anciano , Anciano de 80 o más Años , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Factores de Riesgo , Tasmania/epidemiología , Células Tumorales Cultivadas , Estados Unidos/epidemiología
18.
BMC Genomics ; 22(1): 188, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726677

RESUMEN

BACKGROUND: Basenjis are considered an ancient dog breed of central African origins that still live and hunt with tribesmen in the African Congo. Nicknamed the barkless dog, Basenjis possess unique phylogeny, geographical origins and traits, making their genome structure of great interest. The increasing number of available canid reference genomes allows us to examine the impact the choice of reference genome makes with regard to reference genome quality and breed relatedness. RESULTS: Here, we report two high quality de novo Basenji genome assemblies: a female, China (CanFam_Bas), and a male, Wags. We conduct pairwise comparisons and report structural variations between assembled genomes of three dog breeds: Basenji (CanFam_Bas), Boxer (CanFam3.1) and German Shepherd Dog (GSD) (CanFam_GSD). CanFam_Bas is superior to CanFam3.1 in terms of genome contiguity and comparable overall to the high quality CanFam_GSD assembly. By aligning short read data from 58 representative dog breeds to three reference genomes, we demonstrate how the choice of reference genome significantly impacts both read mapping and variant detection. CONCLUSIONS: The growing number of high-quality canid reference genomes means the choice of reference genome is an increasingly critical decision in subsequent canid variant analyses. The basal position of the Basenji makes it suitable for variant analysis for targeted applications of specific dog breeds. However, we believe more comprehensive analyses across the entire family of canids is more suited to a pangenome approach. Collectively this work highlights the importance the choice of reference genome makes in all variation studies.


Asunto(s)
Lobos , Animales , China , Cromosomas , Perros , Femenino , Genoma , Genómica , Masculino , Lobos/genética
19.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562731

RESUMEN

The distinct properties of allo-reactive T-cell repertoires are not well understood. To investigate whether auto-reactive and allo-reactive T-cell repertoires encoded distinct properties, we used dextramer enumeration, enrichment, single-cell T-cell receptor (TCR) sequencing and multiparameter analysis. We found auto-reactive and allo-reactive T-cells differed in mean ex vivo frequency which was antigen dependent. Allo-reactive T-cells showed clear differences in TCR architecture, with enriched usage of specific T-cell receptor variable (TRBJ) genes and broader use of T-cell receptor variable joining (TRBJ) genes. Auto-reactive T-cell repertoires exhibited complementary determining regions three (CDR3) lengths using a Gaussian distribution whereas allo-reactive T-cell repertoires exhibited distorted patterns in CDR3 length. CDR3 loops from allo-reactive T-cells showed distinct physical-chemical properties, tending to encode loops that were more acidic in charge. Allo-reactive T-cell repertoires differed in diversity metrics, tending to show increased overall diversity and increased homogeneity between repertoires. Motif analysis of CDR3 loops showed allo-reactive T-cell repertoires differed in motif preference which included broader motif use. Collectively, these data conclude that allo-reactive T-cell repertoires are indeed different to auto-reactive repertoires and provide tangible metrics for further investigations and validation. Given that the antigens studied here are overexpressed on multiple cancers and that allo-reactive TCRs often show increased ligand affinity, this new TCR bank also has translational potential for adoptive cell therapy, soluble TCR-based therapy and rational TCR design.


Asunto(s)
Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/citología , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Linfocitos T/química
20.
Methods Mol Biol ; 2243: 1-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606250

RESUMEN

Increasingly affordable sequencing technologies are revolutionizing the field of genomic medicine. It is now feasible to interrogate all major classes of variation in an individual across the entire genome for less than $1000 USD. While the generation of patient sequence information using these technologies has become routine, the analysis and interpretation of this data remains the greatest obstacle to widespread clinical implementation. This chapter summarizes the steps to identify, annotate, and prioritize variant information required for clinical report generation. We discuss methods to detect each variant class and describe strategies to increase the likelihood of detecting causal variant(s) in Mendelian disease. Lastly, we describe a sample workflow for synthesizing large amount of genetic information into concise clinical reports.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Variación Genética/genética , Genoma Humano/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Genómica/métodos , Humanos , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...