Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(22): 15298-15311, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36224708

RESUMEN

Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO2) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI). Past research has relied on time-averaged measurements, limiting our understanding of how neighborhood-level NO2 inequalities co-vary with urban air quality and climate. Here, we use fine-scale (250 m × 250 m) airborne NO2 remote sensing to demonstrate that daily TROPOMI observations resolve a major portion of census tract-scale NO2 inequalities in the New York City-Newark urbanized area. Spatiotemporally coincident TROPOMI and airborne inequalities are well correlated (r = 0.82-0.97), with slopes of 0.82-1.05 for relative and 0.76-0.96 for absolute inequalities for different groups. We calculate daily TROPOMI NO2 inequalities over May 2018-September 2021, reporting disparities of 25-38% with race, ethnicity, and/or household income. Mean daily inequalities agree with results based on TROPOMI measurements oversampled to 0.01° × 0.01° to within associated uncertainties. Individual and mean daily TROPOMI NO2 inequalities are largely insensitive to pixel size, at least when pixels are smaller than ∼60 km2, but are sensitive to low observational coverage. We statistically analyze daily NO2 inequalities, presenting empirical evidence of the systematic overburdening of communities of color and low-income neighborhoods with polluting sources, regulatory ozone co-benefits, and worsened NO2 inequalities and cumulative NO2 and urban heat burdens with climate change.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Ciudad de Nueva York , New Jersey , Contaminación del Aire/análisis , Monitoreo del Ambiente
2.
Environ Sci Technol ; 54(16): 9882-9895, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32806912

RESUMEN

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods. We have traditionally lacked city-wide observations to fully describe these spatial heterogeneities in Houston and in cities globally, especially for reactive gases like nitrogen dioxide (NO2). Here, we analyze novel high-spatial-resolution (250 m × 500 m) NO2 vertical columns measured by the NASA GCAS airborne spectrometer as part of the September-2013 NASA DISCOVER-AQ mission and discuss differences in population-weighted NO2 at the census-tract level. Based on the average of 35 repeated flight circuits, we find 37 ± 6% higher NO2 for non-whites and Hispanics living in low-income tracts (LIN) compared to whites living in high-income tracts (HIW) and report NO2 disparities separately by race ethnicity (11-32%) and poverty status (15-28%). We observe substantial time-of-day and day-to-day variability in LIN-HIW NO2 differences (and in other metrics) driven by the greater prevalence of NOx (≡NO + NO2) emission sources in low-income, non-white, and Hispanic neighborhoods. We evaluate measurements from the recently launched satellite sensor TROPOMI (3.5 km × 7 km at nadir), averaged to 0.01° × 0.01° using physics-based oversampling, and demonstrate that TROPOMI resolves similar relative, but not absolute, tract-level differences compared to GCAS. We utilize the high-resolution FIVE and NEI NOx inventories, plus one year of TROPOMI weekday-weekend variability, to attribute tract-level NO2 disparities to industrial sources and heavy-duty diesel trucking. We show that GCAS and TROPOMI spatial patterns correspond to the surface patterns measured using aircraft profiling and surface monitors. We discuss opportunities for satellite remote sensing to inform decision making in cities generally.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Dióxido de Nitrógeno/análisis , Tecnología de Sensores Remotos , Factores Socioeconómicos , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...