Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2304360121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457517

RESUMEN

The interplay of charge, spin, lattice, and orbital degrees of freedom in correlated materials often leads to rich and exotic properties. Recent studies have brought new perspectives to bosonic collective excitations in correlated materials. For example, inelastic neutron scattering experiments revealed non-trivial band topology for magnons and spin-orbit excitons (SOEs) in a quantum magnet CoTiO3 (CTO). Here, we report phonon properties resulting from a combination of strong spin-orbit coupling, large crystal field splitting, and trigonal distortion in CTO. Specifically, the interaction between SOEs and phonons endows chirality to two [Formula: see text] phonon modes and leads to large phonon magnetic moments observed in magneto-Raman spectra. The remarkably strong magneto-phononic effect originates from the hybridization of SOEs and phonons due to their close energy proximity. While chiral phonons have been associated with electronic topology in some materials, our work suggests opportunities may arise by exploring chiral phonons coupled to topological bosons.

2.
Nat Commun ; 15(1): 550, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228584

RESUMEN

Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ([Formula: see text]-) invariant (helical) 3D TCIs-termed higher-order TCIs (HOTIs)-the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), "spin-Weyl" semimetals, and [Formula: see text]-doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate that ß-MoTe2 realizes a spin-Weyl state and that α-BiBr hosts both 3D QSHI and T-DAXI regimes.

3.
Sci Adv ; 9(50): eadj4074, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100589

RESUMEN

The recently demonstrated chiral modes of lattice motion carry angular momentum and therefore directly couple to magnetic fields. Notably, their magnetic moments are predicted to be strongly influenced by electronic contributions. Here, we have studied the magnetic response of transverse optical phonons in a set of Pb1-xSnxTe films, which is a topological crystalline insulator for x > 0.32 and has a ferroelectric transition at an x-dependent critical temperature. Polarization-dependent terahertz magnetospectroscopy measurements revealed Zeeman splittings and diamagnetic shifts, demonstrating a large phonon magnetic moment. Films in the topological phase exhibited phonon magnetic moment values that were larger than those in the topologically trivial samples by two orders of magnitude. Furthermore, the sign of the effective phonon g-factor was opposite in the two phases, a signature of the topological transition according to our model. These results strongly indicate the existence of interplay between the magnetic properties of chiral phonons and the topology of the electronic band structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA