Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(21): 12310-12325, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33166396

RESUMEN

The Mtq2-Trm112 methyltransferase modifies the eukaryotic translation termination factor eRF1 on the glutamine side chain of a universally conserved GGQ motif that is essential for release of newly synthesized peptides. Although this modification is found in the three domains of life, its exact role in eukaryotes remains unknown. As the deletion of MTQ2 leads to severe growth impairment in yeast, we have investigated its role further and tested its putative involvement in ribosome biogenesis. We found that Mtq2 is associated with nuclear 60S subunit precursors, and we demonstrate that its catalytic activity is required for nucleolar release of pre-60S and for efficient production of mature 5.8S and 25S rRNAs. Thus, we identify Mtq2 as a novel ribosome assembly factor important for large ribosomal subunit formation. We propose that Mtq2-Trm112 might modify eRF1 in the nucleus as part of a quality control mechanism aimed at proof-reading the peptidyl transferase center, where it will subsequently bind during translation termination.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Metiltransferasas/genética , Biogénesis de Organelos , Factores de Terminación de Péptidos/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Modelos Moleculares , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Ribosómico/biosíntesis , ARN Ribosómico/genética , ARN Ribosómico 5.8S/biosíntesis , ARN Ribosómico 5.8S/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo
2.
Mol Cell ; 74(6): 1227-1238.e3, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31003868

RESUMEN

rRNAs and tRNAs universally require processing from longer primary transcripts to become functional for translation. Here, we describe an unsuspected link between tRNA maturation and the 3' processing of 16S rRNA, a key step in preparing the small ribosomal subunit for interaction with the Shine-Dalgarno sequence in prokaryotic translation initiation. We show that an accumulation of either 5' or 3' immature tRNAs triggers RelA-dependent production of the stringent response alarmone (p)ppGpp in the Gram-positive model organism Bacillus subtilis. The accumulation of (p)ppGpp and accompanying decrease in GTP levels specifically inhibit 16S rRNA 3' maturation. We suggest that cells can exploit this mechanism to sense potential slowdowns in tRNA maturation and adjust rRNA processing accordingly to maintain the appropriate functional balance between these two major components of the translation apparatus.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Guanosina Pentafosfato/biosíntesis , Iniciación de la Cadena Peptídica Traduccional , ARN Ribosómico 16S/genética , ARN de Transferencia/genética , Bacillus subtilis/metabolismo , Secuencia de Bases , Guanosina Pentafosfato/genética , Guanosina Trifosfato/metabolismo , Ligasas/genética , Ligasas/metabolismo , Conformación de Ácido Nucleico , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
3.
Nucleic Acids Res ; 46(16): 8605-8615, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29873764

RESUMEN

Ribosomal RNAs are processed from primary transcripts containing 16S, 23S and 5S rRNAs in most bacteria. Maturation generally occurs in a two-step process, consisting of a first crude separation of the major species by RNase III during transcription, followed by precise trimming of 5' and 3' extensions on each species upon accurate completion of subunit assembly. The various endo- and exoribonucleases involved in the final processing reactions are strikingly different in Escherichia coli and Bacillus subtilis, the two best studied representatives of Gram-negative and Gram-positive bacteria, respectively. Here, we show that the one exception to this rule is the protein involved in the maturation of the 3' end of 16S rRNA. Cells depleted for the essential B. subtilis YqfG protein, a homologue of E. coli YbeY, specifically accumulate 16S rRNA precursors bearing 3' extensions. Remarkably, the essential nature of YqfG can be suppressed by deleting the ribosomal RNA degrading enzyme RNase R, i.e. a ΔyqfG Δrnr mutant is viable. Our data suggest that 70S ribosomes containing 30S subunits with 3' extensions of 16S rRNA are functional to a degree, but become substrates for degradation by RNase R and are eliminated.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Exorribonucleasas/genética , Eliminación de Gen , Procesamiento de Término de ARN 3' , ARN Ribosómico 16S/genética , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exorribonucleasas/metabolismo , Metaloproteínas/genética , Metaloproteínas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie
4.
EMBO J ; 36(9): 1167-1181, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28363943

RESUMEN

The PIN domain plays a central role in cellular RNA biology and is involved in processes as diverse as rRNA maturation, mRNA decay and telomerase function. Here, we solve the crystal structure of the Rae1 (YacP) protein of Bacillus subtilis, a founding member of the NYN (Nedd4-BP1/YacP nuclease) subfamily of PIN domain proteins, and identify potential substrates in vivo Unexpectedly, degradation of a characterised target mRNA was completely dependent on both its translation and reading frame. We provide evidence that Rae1 associates with the B. subtilis ribosome and cleaves between specific codons of this mRNA in vivo Critically, we also demonstrate translation-dependent Rae1 cleavage of this substrate in a purified translation assay in vitro Multiple lines of evidence converge to suggest that Rae1 is an A-site endoribonuclease. We present a docking model of Rae1 bound to the B. subtilis ribosomal A-site that is consistent with this hypothesis and show that Rae1 cleaves optimally immediately upstream of a lysine codon (AAA or AAG) in vivo.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Ribosomas/metabolismo , Cristalografía por Rayos X , Modelos Biológicos , Modelos Moleculares , Conformación Proteica
5.
Nucleic Acids Res ; 44(7): 3373-89, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26883633

RESUMEN

The recent findings that the narrow-specificity endoribonuclease RNase III and the 5' exonuclease RNase J1 are not essential in the Gram-positive model organism,Bacillus subtilis, facilitated a global analysis of internal 5' ends that are generated or acted upon by these enzymes. An RNA-Seq protocol known as PARE (Parallel Analysis of RNA Ends) was used to capture 5' monophosphorylated RNA ends in ribonuclease wild-type and mutant strains. Comparison of PARE peaks in strains with RNase III present or absent showed that, in addition to its well-known role in ribosomal (rRNA) processing, many coding sequences and intergenic regions appeared to be direct targets of RNase III. These target sites were, in most cases, not associated with a known antisense RNA. The PARE analysis also revealed an accumulation of 3'-proximal peaks that correlated with the absence of RNase J1, confirming the importance of RNase J1 in degrading RNA fragments that contain the transcription terminator structure. A significant result from the PARE analysis was the discovery of an endonuclease cleavage just 2 nts downstream of the 16S rRNA 3' end. This latter observation begins to answer, at least for B. subtilis, a long-standing question on the exonucleolytic versus endonucleolytic nature of 16S rRNA maturation.


Asunto(s)
Bacillus subtilis/genética , Exorribonucleasas/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Ribonucleasa III/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Mutación , Operón , Procesamiento Postranscripcional del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Ribosómico/química , ARN Ribosómico 16S/metabolismo , ARN Citoplasmático Pequeño/metabolismo , Análisis de Secuencia de ARN
7.
Mol Microbiol ; 95(2): 270-82, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25402410

RESUMEN

Stable RNA maturation is a key process in the generation of functional RNAs, and failure to correctly process these RNAs can lead to their elimination through quality control mechanisms. Studies of the maturation pathways of ribosomal RNA and transfer RNA in Bacillus subtilis showed they were radically different from Escherichia coli and led to the identification of new B. subtilis-specific enzymes. We noticed that, despite their important roles in translation, a number of B. subtilis small stable RNAs still did not have characterised maturation pathways, notably the tmRNA, involved in ribosome rescue, and the RNase P RNA, involved in tRNA maturation. Here, we show that tmRNA is matured by RNase P and RNase Z at its 5' and 3' extremities, respectively, whereas the RNase P RNA is matured on its 3' side by RNase Y. Recent evidence that several RNases are not essential in B. subtilis prompted us to revisit maturation of the scRNA, a component of the signal recognition particle involved in co-translational insertion of specific proteins into the membrane. We show that RNase Y is also involved in 3' processing of scRNA. Lastly, we identified some of the enzymes involved in the turnover of these three stable RNAs.


Asunto(s)
Bacillus subtilis/genética , ARN Bacteriano/metabolismo , ARN Citoplasmático Pequeño/metabolismo , Ribonucleasa P/metabolismo , Secuencia de Bases , Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Genotipo , ARN Bacteriano/genética , ARN Ribosómico/metabolismo , ARN Citoplasmático Pequeño/genética , Ribonucleasas/metabolismo
8.
J Bacteriol ; 195(10): 2340-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23504012

RESUMEN

The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Ribonucleasas/metabolismo , Bacillus subtilis/fisiología , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Microscopía Electrónica de Transmisión , Mutación , Ribonucleasas/genética
9.
Mol Cell Biol ; 32(12): 2254-67, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22493060

RESUMEN

Posttranscriptional and posttranslational modification of macromolecules is known to fine-tune their functions. Trm112 is unique, acting as an activator of both tRNA and protein methyltransferases. Here we report that in Saccharomyces cerevisiae, Trm112 is required for efficient ribosome synthesis and progression through mitosis. Trm112 copurifies with pre-rRNAs and with multiple ribosome synthesis trans-acting factors, including the 18S rRNA methyltransferase Bud23. Consistent with the known mechanisms of activation of methyltransferases by Trm112, we found that Trm112 interacts directly with Bud23 in vitro and that it is required for its stability in vivo. Consequently, trm112Δ cells are deficient for Bud23-mediated 18S rRNA methylation at position G1575 and for small ribosome subunit formation. Bud23 failure to bind nascent preribosomes activates a nucleolar surveillance pathway involving the TRAMP complexes, leading to preribosome degradation. Trm112 is thus active in rRNA, tRNA, and translation factor modification, ideally placing it at the interface between ribosome synthesis and function.


Asunto(s)
Metiltransferasas/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , ARNt Metiltransferasas/metabolismo , Guanina , Metilación , Proteína Metiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
Biochimie ; 94(7): 1533-43, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22266024

RESUMEN

During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.


Asunto(s)
Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos/química , Factores de Terminación de Péptidos/metabolismo , Animales , Humanos , Metilación , ARNt Metiltransferasas/metabolismo
11.
Nucleic Acids Res ; 39(14): 6249-59, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21478168

RESUMEN

Methylation is a common modification encountered in DNA, RNA and proteins. It plays a central role in gene expression, protein function and mRNA translation. Prokaryotic and eukaryotic class I translation termination factors are methylated on the glutamine of the essential and universally conserved GGQ motif, in line with an important cellular role. In eukaryotes, this modification is performed by the Mtq2-Trm112 holoenzyme. Trm112 activates not only the Mtq2 catalytic subunit but also two other tRNA methyltransferases (Trm9 and Trm11). To understand the molecular mechanisms underlying methyltransferase activation by Trm112, we have determined the 3D structure of the Mtq2-Trm112 complex and mapped its active site. Using site-directed mutagenesis and in vivo functional experiments, we show that this structure can also serve as a model for the Trm9-Trm112 complex, supporting our hypothesis that Trm112 uses a common strategy to activate these three methyltransferases.


Asunto(s)
Proteína Metiltransferasas/química , Subunidades de Proteína/química , Dominio Catalítico , Cristalografía , Activación Enzimática , Proteínas Fúngicas/química , Eliminación de Gen , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Biosíntesis de Proteínas , Proteína Metiltransferasas/genética , Subunidades de Proteína/genética , S-Adenosilmetionina/química , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/genética
12.
FEBS Lett ; 582(16): 2352-6, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18539146

RESUMEN

The ubiquitous tripeptide Gly-Gly-Gln in class 1 polypeptide release factors triggers polypeptide release on ribosomes. The Gln residue in both bacterial and yeast release factors is N5-methylated, despite their distinct evolutionary origin. Methylation of eRF1 in yeast is performed by the heterodimeric methyltransferase (MTase) Mtq2p/Trm112p, and requires eRF3 and GTP. Homologues of yeast Mtq2p and Trm112p are found in man, annotated as an N6-DNA-methyltransferase and of unknown function. Here we show that the human proteins methylate human and yeast eRF1.eRF3.GTP in vitro, and that the MTase catalytic subunit can complement the growth defect of yeast strains deleted for mtq2.


Asunto(s)
Metiltransferasas/metabolismo , Factores de Terminación de Péptidos/metabolismo , Proteína Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Cromosomas Humanos Par 21 , Prueba de Complementación Genética , Humanos , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Datos de Secuencia Molecular , Proteína Metiltransferasas/química , Proteína Metiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...