Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 9(1): 61, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162901

RESUMEN

BACKGROUND: This study aimed to develop a novel positron emission tomography (PET) tracer, [68Ga]Ga-TD-01, for CXCR4 imaging. To achieve this goal, the molecular scaffold of TIQ15 was tuned by conjugation with the DOTA chelator to make it suitable for 68Ga radiolabeling. METHODS: A bifunctional chelator was prepared by conjugating the amine group of TIQ15 with p-NCS-Bz-DOTA, yielding TD-01, with a high yield (68.92%). TD-01 was then radiolabeled with 68Ga using 0.1 M ammonium acetate at 60 °C for 10 min. A 1-h dynamic small animal PET/MRI study of the labeled compound in GL261-luc2 tumor-bearing mice was performed, and brain tumor uptake was assessed. Blocking studies involved pre-administration of TIQ15 (10 mg/kg) 10 min before the PET procedure started. RESULTS: [68Ga]Ga-TD-01 exhibited a radiochemical yield (RCY) of 36.33 ± 1.50% (EOS), with a radiochemical purity > 99% and a molar activity of 55.79 ± 1.96 GBq/µmol (EOS). The radiotracer showed in vitro stability in PBS and human plasma for over 4 h. Biodistribution studies in healthy animals revealed favorable kinetics for subsequent PET pharmacokinetic modeling with low uptake in the brain and moderate uptake in lungs, intestines and spleen. Elimination could be assigned to a renal-hepatic pathway as showed by high uptake in kidneys, liver, and urinary bladder. Importantly, [68Ga]Ga-TD-01 uptake in glioblastoma (GBM)-bearing mice significantly decreased upon competition with TIQ15, with a baseline tumor-to-background ratios > 2.5 (20 min p.i.), indicating high specificity. CONCLUSION: The newly developed CXCR4 PET tracer, [68Ga]Ga-TD-01, exhibited a high binding inhibition for CXCR4, excellent in vitro stability, and favorable pharmacokinetics, suggesting that the compound is a promising candidate for full in vivo characterization of CXCR4 expression in GBM, with potential for further development as a tool in cancer diagnosis.

2.
Am J Pathol ; 190(11): 2203-2225, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32818496

RESUMEN

Immune aggregates organized as tertiary lymphoid structures (TLS) are observed within the kidneys of patients with systemic lupus erythematosus and lupus nephritis (LN). Renal TLS was characterized in lupus-prone New Zealand black × New Zealand white F1 mice analyzing cell composition and vessel formation. RNA sequencing was performed on transcriptomes isolated from lymph nodes, macrodissected TLS from kidneys, and total kidneys of mice at different disease stages by using a personal genome machine and RNA sequencing. Formation of TLS was found in anti-double-stranded DNA antibody-positive mice, and the structures were organized as interconnected large networks with distinct T/B cell zones with adjacent dendritic cells, macrophages, plasma cells, high endothelial venules, supporting follicular dendritic cells network, and functional germinal centers. Comparison of gene profiles of whole kidney, renal TLS, and lymph nodes revealed a similar gene signature of TLS and lymph nodes. The up-regulated genes within the kidneys of lupus-prone mice during LN development reflected TLS formation, whereas the down-regulated genes were involved in metabolic processes of the kidney cells. A comparison with human LN gene expression revealed similar up-regulated genes as observed during the development of murine LN and TLS. In conclusion, kidney TLS have a similar cell composition, structure, and gene signature as lymph nodes and therefore may function as a kidney-specific type of lymph node.


Asunto(s)
Células Dendríticas , Regulación de la Expresión Génica , Riñón , Nefritis Lúpica , Ganglios Linfáticos , Animales , Células Dendríticas/metabolismo , Células Dendríticas/patología , Perfilación de la Expresión Génica , Riñón/metabolismo , Riñón/patología , Nefritis Lúpica/metabolismo , Nefritis Lúpica/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Ratones
3.
Sci Rep ; 10(1): 12237, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699247

RESUMEN

This study demonstrates a role for the extracellular matrix protein nephronectin (NPNT) in promoting experimental breast cancer brain metastasis, possibly through enhanced binding to- and migration through brain endothelial cells. With the introduction of more targeted breast cancer treatments, a prolonged survival has resulted during the last decade. Consequently, an increased number of patients develop metastasis in the brain, a challenging organ to treat. We recently reported that NPNT was highly expressed in primary breast cancer and associated with unfavourable prognosis. The current study addresses our hypothesis that NPNT promotes brain metastases through its integrin-binding motifs. SAGE-sequencing revealed that NPNT was significantly up-regulated in human breast cancer tissue compared to pair-matched normal breast tissue. Human brain metastatic breast cancers expressed both NPNT and its receptor, integrin α8ß1. Using an open access repository; BreastMark, we found a correlation between high NPNT mRNA levels and poor prognosis for patients with the luminal B subtype. The 66cl4 mouse cell line was used for expression of wild-type and mutant NPNT, which is unable to bind α8ß1. Using an in vivo model of brain metastatic colonization, 66cl4-NPNT cells showed an increased ability to form metastatic lesions compared to cells with mutant NPNT, possibly through reduced endothelial adhesion and transmigration.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de la Matriz Extracelular/metabolismo , Integrinas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Mama/metabolismo , Mama/patología , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pronóstico , ARN Mensajero/metabolismo
4.
Sci Rep ; 8(1): 11720, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082828

RESUMEN

Intratumoral formation of tertiary lymphoid structures (TLS) within the tumor microenvironment is considered to be a consequence of antigen challenge during anti-tumor responses. Intracellular adhesion molecule 1 (ICAM1) has been implicated in a variety of immune and inflammatory responses, in addition to associate with triple negative breast cancer (TNBC). In this study, we detected TLS in the aggressive tumor phenotypes TNBC, HER2+ and luminal B, whereas the TLS negative group contained solely tumors of the luminal A subtype. We show that ICAM1 is exclusively expressed in TNBC and HER2 enriched subtypes known to be associated with inflammation and the formation of TLS. Furthermore, cell from normal mammary epithelium and breast cancer cell lines expressed ICAM1 upon stimulation with the proinflammatory cytokines TNFα, IL1ß and IFNγ. ICAM1 overexpression was induced in MCF7, MDA-MB-468 and SK-BR-3 cells regardless of hormone receptor status. Taken together, our findings show that ICAM1 is expressed in aggressive subtypes of breast cancer and its expression is inducible by well-known proinflammatory cytokines. ICAM1 may be an attractive molecular target for TNBC, but further investigations elucidating the role of ICAM1 in targeted therapies have to take into consideration selective subtypes of breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Citocinas/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Estructuras Linfoides Terciarias/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Humanos , Inmunohistoquímica , Molécula 1 de Adhesión Intercelular/genética , Células MCF-7 , Receptor ErbB-2/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral/fisiología
5.
Sci Rep ; 8(1): 7861, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777158

RESUMEN

Tertiary lymphoid structures (TLS) develop in the kidneys of lupus-prone mice and systemic lupus erythematosus (SLE) patients with lupus nephritis (LN). Here we investigated the presence of mesenchymal stem cells (MSCs) in the development of TLS in murine LN, as well as the role of human MSCs as lymphoid tissue organizer (LTo) cells on the activation of CD4+ T cells from three groups of donors including Healthy, SLE and LN patients. Mesenchymal stem like cells were detected within the pelvic wall and TLS in kidneys of lupus-prone mice. An increase in LTß, CXCL13, CCL19, VCAM1 and ICAM1 gene expressions were detected during the development of murine LN. Human MSCs stimulated with the pro-inflammatory cytokines TNF-α and IL-1ß significantly increased the expression of CCL19, VCAM1, ICAM1, TNF-α, and IL-1ß. Stimulated MSCs induced proliferation of CD4+ T cells, but an inhibitory effect was observed when in co-culture with non-stimulated MSCs. A contact dependent increase in Th2 and Th17 subsets were observed for T cells from the Healthy group after co-culture with stimulated MSCs. Our data suggest that tissue-specific or/and migratory MSCs could have pivotal roles as LTo cells in accelerating early inflammatory processes and initiating the formation of kidney specific TLS in chronic inflammatory conditions.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Nefritis Lúpica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estructuras Linfoides Terciarias/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Técnicas de Cocultivo , Humanos , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
6.
BMC Cancer ; 15: 101, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25884667

RESUMEN

BACKGROUND: Tertiary lymphoid structures (TLS) are highly organized immune cell aggregates that develop at sites of inflammation or infection in non-lymphoid organs. Despite the described role of inflammation in tumor progression, it is still unclear whether the process of lymphoid neogenesis and biological function of ectopic lymphoid tissue in tumors are beneficial or detrimental to tumor growth. In this study we analysed if TLS are found in human breast carcinomas and its association with clinicopathological parameters. METHODS: In a patient group (n = 290) who underwent primary surgery between 2011 and 2012 we assessed the interrelationship between the presence of TLS in breast tumors and clinicopathological factors. Prognostic factors were entered into a binary logistic regression model for identifying independent predictors for intratumoral TLS formation. RESULTS: There was a positive association between the grade of immune cell infiltration within the tumor and important prognostic parameters such as hormone receptor status, tumor grade and lymph node involvement. The majority of patients with high grade infiltration of immune cells had TLS positive tumors. In addition to the degree of immune cell infiltration, the presence of TLS was associated with organized immune cell aggregates, hormone receptor status and tumor grade. Tumors with histological grade 3 were the strongest predictor for the presence of TLS in a multivariate regression model. The model also predicted that the odds for having intratumoral TLS formation were ten times higher for patients with high grade of inflammation than low grade. CONCLUSIONS: Human breast carcinomas frequently contain TLS and the presence of these structures is associated with aggressive forms of tumors. Locally generated immune response with potentially antitumor immunity may control tumorigenesis and metastasis. Thus, defining the role of TLS formation in breast carcinomas may lead to alternative therapeutic approaches targeting the immune system.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/patología , Adulto , Anciano , Biomarcadores de Tumor , Biopsia , Neoplasias de la Mama/cirugía , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Carga Tumoral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA