Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Astrophys J ; 533(1): L49-L52, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727389

RESUMEN

We present moderate- (R approximately 2700) and high-resolution (R approximately 22,400) 2.0-2.4 µm spectroscopy of the central 0.1 arcsec2 of the Galaxy obtained with the facility near-infrared spectrometer (NIRSPEC) for the Keck II telescope. The composite spectra do not have any features attributable to the brightest stars in the central cluster; i.e., after background subtraction, W12CO&parl0;2-0&parr0;<2 Å. This stringent limit leads us to conclude that the majority, if not all, of the stars are hotter than typical red giants. Coupled with previously reported photometry, we conclude that the sources are likely OB main-sequence stars. In addition, the continuum slope in the composite spectrum is bluer than that of a red giant and is similar to that of the nearby hot star IRS 16NW. It is unlikely that they are late-type giants stripped of their outer envelopes because such sources would be much fainter than those observed. Given their inferred youth (tauage<20 Myr), we suggest the possibility that the stars have formed within 0.1 pc of the supermassive black hole. We find a newly identified broad-line component (VFWHM approximately 1000 km s-1) toward the 2.2178 µm [Fe iii] line located within a few arcseconds of Sagittarius A*. A similar component is not seen in the Brgamma emission.

2.
Astrophys J ; 533(1): L53-L56, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727390

RESUMEN

We present high-resolution spectroscopy and images of a photodissociation region (PDR) in M16 obtained during commissioning of the near-infrared spectrometer (NIRSPEC) on the Keck II telescope. PDRs play a significant role in regulating star formation, and M16 offers the opportunity to examine the physical processes of a PDR in detail. We simultaneously observe both the molecular and ionized phases of the PDR and resolve the spatial and kinematic differences between them. The most prominent regions of the PDR are viewed edge-on. Fluorescent emission from nearby stars is the primary excitation source, although collisions also preferentially populate the lowest vibrational levels of H2. Variations in density-sensitive emission-line ratios demonstrate that the molecular cloud is clumpy, with an average density n=3x105 cm-3. We measure the kinetic temperature of the molecular region directly and find that TH2=930 K. The observed density, temperature, and UV flux imply a photoelectric heating efficiency of 4%. In the ionized region, ni=5x103 cm-3 and THii=9500 K. In the brightest regions of the PDR, the recombination line widths include a nonthermal component, which we attribute to viewing geometry.

3.
Astrophys J ; 533(1): L45-L48, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727388

RESUMEN

Near-infrared spectroscopic observations of a sample of very cool, low-mass objects are presented with higher spectral resolution than in any previous studies. Six of the objects are L dwarfs, ranging in spectral class from L2 to L8/9, and the seventh is a methane or T dwarf. These new observations were obtained during commissioning of the near-infrared spectrometer (NIRSPEC), the first high-resolution near-infrared cryogenic spectrograph for the Keck II 10 m telescope on Mauna Kea, Hawaii. Spectra with a resolving power of R approximately 2500 from 1.135 to 1.360 µm (approximately J band) are presented for each source. At this resolution, a rich spectral structure is revealed, much of which is due to blending of unresolved molecular transitions. Strong lines due to neutral potassium (K i) and bands due to iron hydride (FeH) and steam (H2O) change significantly throughout the L sequence. Iron hydride disappears between L5 and L8, the steam bands deepen, and the K i lines gradually become weaker but wider because of pressure broadening. An unidentified feature occurs at 1.22 µm that has a temperature dependence like FeH but has no counterpart in the available FeH opacity data. Because these objects are 3-6 mag brighter in the near-infrared compared with the I band, spectral classification is efficient. One of the objects studied (2MASSW J1523+3014) is the coolest L dwarf discovered so far by the 2 Micron All-Sky Survey (2MASS), but its spectrum is still significantly different from the methane-dominated objects such as Gl 229B or SDSS 1624+0029.

4.
Astrophys J ; 533(1): L57-L60, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727391

RESUMEN

We present infrared spectroscopy of the Antennae galaxies (NGC 4038/9) with the near-infrared spectrometer (NIRSPEC) at the W. M. Keck Observatory. We imaged the star clusters in the vicinity of the southern nucleus (NGC 4039) with 0&farcs;39 seeing in the K band using NIRSPEC's slit-viewing camera. The brightest star cluster revealed in the near-IR [MK&parl0;0&parr0; approximately -17.9] is insignificant optically but is coincident with the highest surface brightness peak in the mid-IR (12-18 µm) Infrared Space Observatory image presented by Mirabel et al. We obtained high signal-to-noise ratio 2.03-2.45 µm spectra of the nucleus and the obscured star cluster at R approximately 1900. The cluster is very young ( approximately 4 Myr), massive (M approximately 16x106 M middle dot in circle), and compact (with a density of approximately 115 M middle dot in circle pc-3 within a 32 pc half-light radius), assuming a Salpeter initial mass function (0.1-100 M middle dot in circle). Its hot stars have a radiation field characterized by Teff approximately 39,000 K, and they ionize a compact H ii region with ne approximately 104 cm-3. The stars are deeply embedded in gas and dust (AV approximately 9-10 mag), and their strong far-ultraviolet field powers a clumpy photodissociation region with densities nH greater, similar105 cm-3 on scales of approximately 200 pc, radiating LH21-0S&parl0;1&parr0;=9600 L middle dot in circle.

5.
Astrophys J ; 533(1): L61-L64, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727392

RESUMEN

This Letter presents infrared spectra taken with the newly commissioned near-infrared spectrometer (NIRSPEC) on the Keck II telescope of the high-redshift radio galaxy MRC 2025-218 (z=2.63). These observations represent the deepest infrared spectra of a radio galaxy to date and have allowed for the detection of Hbeta, [O iii] lambdalambda4959, 5007, [O i] lambda6300, Halpha, [N ii] lambdalambda6548, 6583, and [S ii] lambdalambda6716, 6713. The Halpha emission is very broad (FWHM=9300 km s-1) and luminous (2.6x1044 ergs s-1), and it is very comparable to the line widths and strengths of radio-loud quasars at the same redshift. This strongly supports active galactic nucleus unification models linking radio galaxies and quasars, although we discuss some of the outstanding differences. The line [O iii] lambda5007 is extremely strong and has extended emission with large relative velocities toward the nucleus. We also derive that if the extended emission is due to star formation, each knot has a star formation rate comparable to a Lyman-break galaxy at the same redshift.

6.
Astrophys J ; 533(1): L65-L68, 2000 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-10727393

RESUMEN

Moderate-resolution, near-IR spectroscopy of MS 1512-cB58 is presented, obtained during commissioning of the near-infrared spectrometer (NIRSPEC) on the Keck II telescope. The strong lensing of this z=2.72 galaxy by the foreground cluster MS 1512+36 makes it the best candidate for detailed study of the rest-frame optical properties of Lyman-break galaxies. In 80 minutes of on-source integration, we have detected Halpha, [N ii] lambdalambda6583, 6548, [O i] lambda6300, He i lambda5876, [O iii] lambdalambda5007, 4959, Hbeta, Hgamma, [O ii] lambda3727, and a strong continuum signal in the range of 1.29-2.46 µm. A redshift of z=2.7290+/-0.0007 is inferred from the emission lines, in contrast to the z=2.7233 calculated from UV observations of interstellar absorption lines. Using the Balmer line ratios, we find an extinction of E(B-V) = 0.27. Using the line strengths, we infer a star formation rate (SFR) of 620+/-18 M middle dot in circle yr-1 (H0=75, q0=0.1, and Lambda=0), which is a factor of 2 higher than that measured from narrowband imaging observations of the galaxy but is a factor of almost 4 lower than the SFR inferred from the UV continuum luminosity. The width of the Balmer lines yields a mass of Mvir=1.2x1010 M middle dot in circle. We find that the oxygen abundance is 13 solar, in good agreement with other estimates of the metallicity. However, we infer a high nitrogen abundance, which may argue for the presence of an older stellar population.

7.
Astrophys J ; 530(2): L97-L101, 2000 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-10655174

RESUMEN

H- and K-band moderate-resolution and 4 µm high-resolution spectra have been obtained for FMM 362, a bright star in the Quintuplet Cluster near the Galactic center. The spectral features in these bands closely match those of the Pistol Star, a luminous blue variable and one of the most luminous stars known. The new spectra and previously obtained photometry imply a very high luminosity for FMM 362, L>/=106 L middle dot in circle, and a temperature of 10,000-13,000 K. Based on its luminosity, temperature, photometric variability, and similarities to the Pistol Star, we conclude that FMM 362 is a luminous blue variable.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA