Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(6): 714-733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39215134

RESUMEN

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.


Asunto(s)
Proliferación Celular , Redes Reguladoras de Genes , Músculo Liso Vascular , Miocitos del Músculo Liso , Factor de Transcripción STAT3 , Inhibidor Tisular de Metaloproteinasa-1 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/citología , Humanos , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Células Cultivadas , Análisis de la Célula Individual , Epigénesis Genética , Transcriptoma , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal
2.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862484

RESUMEN

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Asunto(s)
Radiación Cósmica , Vuelo Espacial , Animales , Humanos , Ratones , Radiación Cósmica/efectos adversos , Ratas , Masculino , Riñón/patología , Riñón/efectos de la radiación , Riñón/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/etiología , Ingravidez/efectos adversos , Astronautas , Ratones Endogámicos C57BL , Proteómica , Femenino , Marte , Simulación de Ingravidez/efectos adversos
3.
Nat Cardiovasc Res ; 3(6): 714-733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38898928

RESUMEN

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.

4.
Cardiovasc Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717632

RESUMEN

AIMS: Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging. METHODS AND RESULTS: We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of aging, and ECM proteomics in mice from 22-72w. Vascular aging was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalised all parameters to 72w. ECM proteomics identified major changes in collagens with aging, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor ß1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFß1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSIONS: Vascular aging is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular aging, associated with changes in ECM regulatory proteins including LOX and WISP2.

5.
Atherosclerosis ; 390: 117308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37821269

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis and other cardiovascular diseases (CVD) are well established to be both instigated and worsened by inflammation. Indeed, CANTOS formally proved that targeting the inflammatory cytokine IL-1ß only could reduce both cardiovascular events and death. However, due to the central role of IL-1ß in host defence, blockade increased fatal infections, suggesting targeting key immune mediators over the long natural history of CVD is unsuitable. Thus, discovering alternative mechanisms that generate vascular inflammation may identify more actionable targets. METHODS: We used primary human VSMCs and a combination of biochemical, pharmacological and molecular biological techniques to generate the data. Human carotid atherosclerotic plaques were also assessed histologically. RESULTS: We showed that VSMCs expressed and efficiently processed pro-IL-1ß to the active form after receiving a single stimulus via IL-1R1 or TLR4. Importantly, pro-IL-1ß processing did not utilise inflammasomes or caspases. Unusually, we found that cathepsin C-activated chymase was responsible for cleaving IL-1ß in VSMCs, and provided evidence for chymase expression in cultured VSMCs and in the fibrous cap of human plaques. Chymase also efficiently cleaved and activated recombinant pro-IL-1ß. CONCLUSIONS: Thus, VSMCs are efficient activators of IL-1ß that do not use canonical inflammasomes or caspases. Hence, this alternative pathway could be targeted for long-term treatment of CVDs, as it is not central to everyday host defence.


Asunto(s)
Enfermedades Cardiovasculares , Músculo Liso Vascular , Humanos , Interleucina-1beta/metabolismo , Quimasas/metabolismo , Músculo Liso Vascular/metabolismo , Inflamasomas/metabolismo , Células Cultivadas , Inflamación/metabolismo , Caspasas/metabolismo , Enfermedades Cardiovasculares/metabolismo , Miocitos del Músculo Liso/metabolismo
6.
Nat Commun ; 14(1): 7994, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042913

RESUMEN

Aortic aneurysms, which may dissect or rupture acutely and be lethal, can be a part of multisystem disorders that have a heritable basis. We report four patients with deficiency of selenocysteine-containing proteins due to selenocysteine Insertion Sequence Binding Protein 2 (SECISBP2) mutations who show early-onset, progressive, aneurysmal dilatation of the ascending aorta due to cystic medial necrosis. Zebrafish and male mice with global or vascular smooth muscle cell (VSMC)-targeted disruption of Secisbp2 respectively show similar aortopathy. Aortas from patients and animal models exhibit raised cellular reactive oxygen species, oxidative DNA damage and VSMC apoptosis. Antioxidant exposure or chelation of iron prevents oxidative damage in patient's cells and aortopathy in the zebrafish model. Our observations suggest a key role for oxidative stress and cell death, including via ferroptosis, in mediating aortic degeneration.


Asunto(s)
Aneurisma de la Aorta , Pez Cebra , Humanos , Masculino , Ratones , Animales , Selenocisteína , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Selenoproteínas/genética , Miocitos del Músculo Liso/metabolismo
7.
Cardiovasc Res ; 119(12): 2179-2189, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37309666

RESUMEN

AIMS: Atherosclerosis is driven by multiple processes across multiple body systems. For example, the innate immune system drives both atherogenesis and plaque rupture via inflammation, while coronary artery-occluding thrombi formed by the coagulation system cause myocardial infarction and death. However, the interplay between these systems during atherogenesis is understudied. We recently showed that coagulation and immunity are fundamentally linked by the activation of interleukin-1α (IL-1α) by thrombin, and generated a novel knock-in mouse in which thrombin cannot activate endogenous IL-1α [IL-1α thrombin mutant (IL-1αTM)]. METHODS AND RESULTS: Here, we show significantly reduced atherosclerotic plaque formation in IL-1αTM/Apoe-/- mice compared with Apoe-/- and reduced T-cell infiltration. However, IL-1αTM/Apoe-/- plaques have reduced vascular smooth muscle cells, collagen, and fibrous caps, indicative of a more unstable phenotype. Interestingly, the reduced atherogenesis seen with thrombin inhibition was absent in IL-1αTM/Apoe-/- mice, suggesting that thrombin inhibitors can affect atherosclerosis via reduced IL-1α activation. Finally, bone marrow chimeras show that thrombin-activated IL-1α is derived from both vessel wall and myeloid cells. CONCLUSIONS: Together, we reveal that the atherogenic effect of ongoing coagulation is, in part, mediated via thrombin cleavage of IL-1α. This not only highlights the importance of interplay between systems during disease and the potential for therapeutically targeting IL-1α and/or thrombin, but also forewarns that IL-1 may have a role in plaque stabilization.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Trombina , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/prevención & control , Proliferación Celular , Colágeno/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Trombina/metabolismo
8.
Cardiovasc Res ; 119(5): 1279-1294, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35994249

RESUMEN

AIMS: Quiescent, differentiated adult vascular smooth muscle cells (VSMCs) can be induced to proliferate and switch phenotype. Such plasticity underlies blood vessel homeostasis and contributes to vascular disease development. Oligoclonal VSMC contribution is a hallmark of end-stage vascular disease. Here, we aim to understand cellular mechanisms underpinning generation of this VSMC oligoclonality. METHODS AND RESULTS: We investigate the dynamics of VSMC clone formation using confocal microscopy and single-cell transcriptomics in VSMC-lineage-traced animal models. We find that activation of medial VSMC proliferation occurs at low frequency after vascular injury and that only a subset of expanding clones migrate, which together drives formation of oligoclonal neointimal lesions. VSMC contribution in small atherosclerotic lesions is typically from one or two clones, similar to observations in mature lesions. Low frequency (<0.1%) of clonal VSMC proliferation is also observed in vitro. Single-cell RNA-sequencing revealed progressive cell state changes across a contiguous VSMC population at onset of injury-induced proliferation. Proliferating VSMCs mapped selectively to one of two distinct trajectories and were associated with cells showing extensive phenotypic switching. A proliferation-associated transitory state shared pronounced similarities with atypical SCA1+ VSMCs from uninjured mouse arteries and VSMCs in healthy human aorta. We show functionally that clonal expansion of SCA1+ VSMCs from healthy arteries occurs at higher rate and frequency compared with SCA1- cells. CONCLUSION: Our data suggest that activation of proliferation at low frequency is a general, cell-intrinsic feature of VSMCs. We show that rare VSMCs in healthy arteries display VSMC phenotypic switching akin to that observed in pathological vessel remodelling and that this is a conserved feature of mouse and human healthy arteries. The increased proliferation of modulated VSMCs from healthy arteries suggests that these cells respond more readily to disease-inducing cues and could drive oligoclonal VSMC expansion.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Ataxias Espinocerebelosas , Adulto , Animales , Humanos , Músculo Liso Vascular/patología , Enfermedades Cardiovasculares/patología , Proliferación Celular , Aterosclerosis/patología , Fenotipo , Ataxias Espinocerebelosas/patología , Miocitos del Músculo Liso/patología , Células Cultivadas
9.
J Biomech Eng ; 144(10)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35274123

RESUMEN

Fiber structures and pathological features, e.g., inflammation and glycosaminoglycan (GAG) deposition, are the primary determinants of aortic mechanical properties which are associated with the development of an aneurysm. This study is designed to quantify the association of tissue ultimate strength and extensibility with the structural percentage of different components, in particular, GAG, and local fiber orientation. Thoracic aortic aneurysm (TAA) tissues from eight patients were collected. Ninety-six tissue strips of thickened intima, media, and adventitia were prepared for uni-extension tests and histopathological examination. Area ratios of collagen, elastin, macrophage and GAG, and collagen fiber dispersion were quantified. Collagen, elastin, and GAG were layer-dependent and the inflammatory burden in all layers was low. The local GAG ratio was negatively associated with the collagen ratio (r2 = 0.173, p < 0.05), but positively with elastin (r2 = 0.037, p < 0.05). Higher GAG deposition resulted in larger local collagen fiber dispersion in the media and adventitia, but not in the intima. The ultimate stretch in both axial and circumferential directions was exclusively associated with elastin ratio (axial: r2 = 0.186, p = 0.04; circumferential: r2 = 0.175, p = 0.04). Multivariate analysis showed that collagen and GAG contents were both associated with ultimate strength in the circumferential direction, but not with the axial direction (collagen: slope = 27.3, GAG: slope = -18.4, r2 = 0.438, p = 0.002). GAG may play important roles in TAA material strength. Their deposition was found to be associated positively with the local collagen fiber dispersion and negatively with ultimate strength in the circumferential direction.


Asunto(s)
Aneurisma de la Aorta Torácica , Elastina , Fenómenos Biomecánicos , Colágeno , Glicosaminoglicanos , Humanos , Macrófagos
10.
Cardiovasc Res ; 118(7): 1713-1727, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34142149

RESUMEN

AIMS: Traditional markers of cell senescence including p16, Lamin B1, and senescence-associated beta galactosidase (SAßG) suggest very high frequencies of senescent cells in atherosclerosis, while their removal via 'senolysis' has been reported to reduce atherogenesis. However, selective killing of a variety of different cell types can exacerbate atherosclerosis. We therefore examined the specificity of senescence markers in vascular smooth muscle cells (VSMCs) and the effects of genetic or pharmacological senolysis in atherosclerosis. METHODS AND RESULTS: We examined traditional senescence markers in human and mouse VSMCs in vitro, and in mouse atherosclerosis. p16 and SAßG increased and Lamin B1 decreased in replicative senescence and stress-induced premature senescence (SIPS) of cultured human VSMCs. In contrast, mouse VSMCs undergoing SIPS showed only modest p16 up-regulation, and proliferating mouse monocyte/macrophages also expressed p16 and SAßG. Single cell RNA-sequencing (scRNA-seq) of lineage-traced mice showed increased p16 expression in VSMC-derived cells in plaques vs. normal arteries, but p16 localized to Stem cell antigen-1 (Sca1)+ or macrophage-like populations. Activation of a p16-driven suicide gene to remove p16+ vessel wall- and/or bone marrow-derived cells increased apoptotic cells, but also induced inflammation and did not change plaque size or composition. In contrast, the senolytic ABT-263 selectively reduced senescent VSMCs in culture, and markedly reduced atherogenesis. However, ABT-263 did not reduce senescence markers in vivo, and significantly reduced monocyte and platelet counts and interleukin 6 as a marker of systemic inflammation. CONCLUSIONS: We show that genetic and pharmacological senolysis have variable effects on atherosclerosis, and may promote inflammation and non-specific effects respectively. In addition, traditional markers of cell senescence such as p16 have significant limitations to identify and remove senescent cells in atherosclerosis, suggesting that senescence studies in atherosclerosis and new senolytic drugs require more specific and lineage-restricted markers before ascribing their effects entirely to senolysis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Senescencia Celular , Humanos , Inflamación/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Senoterapéuticos
11.
Atherosclerosis ; 320: 38-46, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33524908

RESUMEN

BACKGROUND AND AIMS: Artery is subject to wall shear stress (WSS) and vessel structural stress (VSS) simultaneously. This study is designed to explore the role of VSS in development of atherosclerosis. METHODS: Silastic collars were deployed on the carotid to create two constrictions on 13 rabbits for a distinct mechanical environment at the constriction. MRI was performed to visualize arteries' configuration. Animals with high fat (n = 9; Model-group) and normal diet (n = 4; Control-group) were sacrificed after 16 weeks. 3D fluid-structure interaction analysis was performed to quantify WSS and VSS simultaneously. RESULTS: Twenty plaques were found in Model-group and 3 in Control-group. In Model-group, 8 plaques located proximally to the first constriction (Region-1, close to the heart) and 7 distally to the second (Region-2, close to the head) and 5 plaques were found on the contralateral side of 3 rabbits. Plaques at Region-1 tended to be bigger than those at Region-2 and the macrophage density at these locations was comparable. Minimum time-averaged WSS (TAWSS) in Region-1 was significantly higher than that in Region-2, and both maximum oscillatory shear index (OSI) and particle relative residence time (RRT) were significantly lower. Peak and mean VSS in Region-1 were significantly higher than those in Region-2. Correlation analyses indicated that low TAWSS, high OSI and RRT were only associated with plaque in Region-2, while lesions in Region-1 were only associated with high VSS. Moreover, only VSS was associated with wall thickness of plaque-free regions in both regions. CONCLUSIONS: VSS might contribute to the initialization and development of atherosclerosis solely or in combination with WSS.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Arterias Carótidas/diagnóstico por imagen , Constricción Patológica , Hemodinámica , Modelos Cardiovasculares , Conejos , Resistencia al Corte , Estrés Mecánico
12.
Circ Res ; 128(4): 474-491, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33353368

RESUMEN

RATIONALE: Vascular smooth muscle cell (VSMC) senescence promotes atherosclerosis and features of plaque instability, in part, through lipid-mediated oxidative DNA damage and telomere dysfunction. SIRT6 (Sirtuin 6) is a nuclear deacetylase involved in DNA damage response signaling, inflammation, and metabolism; however, its role in regulating VSMC senescence and atherosclerosis is unclear. OBJECTIVE: We examined SIRT6 expression in human VSMCs, the role, regulation, and downstream pathways activated by SIRT6, and how VSMC SIRT6 regulates atherogenesis. METHODS AND RESULTS: SIRT6 protein, but not mRNA, expression was markedly reduced in VSMCs in human and mouse atherosclerotic plaques, and in human VSMCs derived from plaques or undergoing replicative or palmitate-induced senescence versus healthy aortic VSMCs. The ubiquitin ligase CHIP (C terminus of HSC70-interacting protein) promoted SIRT6 stability, but CHIP expression was reduced in human and mouse plaque VSMCs and by palmitate in a p38- and c-Jun N-terminal kinase-dependent manner. SIRT6 bound to telomeres, while SIRT6 inhibition using shRNA or a deacetylase-inactive mutant (SIRT6H133Y) shortened human VSMC lifespan and induced senescence, associated with telomeric H3K9 (histone H3 lysine 9) hyperacetylation and 53BP1 (p53 binding protein 1) binding, indicative of telomere damage. In contrast, SIRT6 overexpression preserved telomere integrity, delayed cellular senescence, and reduced inflammatory cytokine expression and changes in VSMC metabolism associated with senescence. SIRT6, but not SIRT6H133Y, promoted proliferation and lifespan of mouse VSMCs, and prevented senescence-associated metabolic changes. ApoE-/- (apolipoprotein E) mice were generated that overexpress SIRT6 or SIRT6H133Y in VSMCs only. SM22α-hSIRT6/ApoE-/- mice had reduced atherosclerosis, markers of senescence and inflammation compared with littermate controls, while plaques of SM22α-hSIRT6H133Y/ApoE-/- mice showed increased features of plaque instability. CONCLUSIONS: SIRT6 protein expression is reduced in human and mouse plaque VSMCs and is positively regulated by CHIP. SIRT6 regulates telomere maintenance and VSMC lifespan and inhibits atherogenesis, all dependent on its deacetylase activity. Our data show that endogenous SIRT6 deacetylase is an important and unrecognized inhibitor of VSMC senescence and atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Senescencia Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Sirtuinas/metabolismo , Animales , Aorta/citología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Citocinas/metabolismo , Histonas/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/citología , Sirtuinas/genética , Homeostasis del Telómero , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 40(11): 2598-2604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32907369

RESUMEN

OBJECTIVE: NR4A orphan receptors have been well studied in vascular and myeloid cells where they play important roles in the regulation of inflammation in atherosclerosis. NR4A1 (nerve growth factor IB) is among the most highly induced transcription factors in B cells following BCR (B-cell receptor) stimulation. Given that B cells substantially contribute to the development of atherosclerosis, we examined whether NR4A1 regulates B-cell function during atherogenesis. Approach and Results: We found that feeding Ldlr-/- mice a Western diet substantially increased Nr4a1 expression in marginal zone B (MZB) cells compared with follicular B cells. We then generated Ldlr-/- mice with complete B- or specific MZB-cell deletion of Nr4a1. Complete B-cell deletion of Nr4a1 led to increased atherosclerosis, which was accompanied by increased T follicular helper cell-germinal center axis response, as well as increased serum total cholesterol and triglycerides levels. Interestingly, specific MZB-cell deletion of Nr4a1 increased atherosclerosis in association with an increased T follicular helper-germinal center response but without any impact on serum cholesterol or triglyceride levels. Nr4a1-/- MZB cells showed decreased PDL1 (programmed death ligand-1) expression, which may have contributed to the enhanced T follicular helper response. CONCLUSIONS: Our findings reveal a previously unsuspected role for NR4A1 in the atheroprotective role of MZB cells.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Linfocitos B/metabolismo , Eliminación de Gen , Tejido Linfoide/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Animales , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Aterosclerosis/genética , Aterosclerosis/patología , Linfocitos B/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Tejido Linfoide/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Transducción de Señal
14.
Apoptosis ; 25(9-10): 648-662, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32627119

RESUMEN

Vascular smooth muscle cells (VSMCs) are the main structural cell of blood vessels, and VSMC apoptosis occurs in vascular disease, after injury, and in vessel remodeling during development. Although VSMC apoptosis is viewed as silent, recent studies show that apoptotic cells can promote apoptosis-induced compensatory proliferation (AICP), apoptosis-induced apoptosis (AIA), and migration of both local somatic and infiltrating inflammatory cells. However, the effects of VSMC apoptosis on adjacent VSMCs, and their underlying signaling and mechanisms are unknown. We examined the consequences of VSMC apoptosis after activating extrinsic and intrinsic death pathways. VSMCs undergoing apoptosis through Fas/CD95 or the protein kinase inhibitor staurosporine transcriptionally activated interleukin 6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), leading to their secretion. Apoptosis induced activation of p38MAPK, JNK, and Akt, but neither p38 and JNK activation nor IL-6 or GM-CSF induction required caspase cleavage. IL-6 induction depended upon p38 activity, while Fas-induced GM-CSF expression required p38 and JNK. Conditioned media from apoptotic VSMCs induced VSMC apoptosis in vitro, and IL-6 and GM-CSF acted as pro-survival factors for AIA. VSMC apoptosis was studied in vivo using SM22α-DTR mice that express the diphtheria toxin receptor in VSMCs only. DT administration induced VSMC apoptosis and VSMC proliferation, and also signficantly induced IL-6 and GM-CSF. We conclude that VSMC apoptosis activates multiple caspase-independent intracellular signaling cascades, leading to release of soluble cytokines involved in regulation of both cell proliferation and apoptosis. VSMC AICP may ameliorate while AIA may amplify the effects of pro-apoptotic stimuli in vessel remodeling and disease.


Asunto(s)
Apoptosis/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Interleucina-6/genética , Receptor fas/genética , Animales , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Proliferación Celular/genética , Células Cultivadas , Citocinas/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , MAP Quinasa Quinasa 4/genética , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Proteína Oncogénica v-akt/genética , Transducción de Señal/efectos de los fármacos , Estaurosporina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Nat Biotechnol ; 37(8): 895-906, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31375810

RESUMEN

The epicardium and its derivatives provide trophic and structural support for the developing and adult heart. Here we tested the ability of human embryonic stem cell (hESC)-derived epicardium to augment the structure and function of engineered heart tissue in vitro and to improve efficacy of hESC-cardiomyocyte grafts in infarcted athymic rat hearts. Epicardial cells markedly enhanced the contractility, myofibril structure and calcium handling of human engineered heart tissues, while reducing passive stiffness compared with mesenchymal stromal cells. Transplanted epicardial cells formed persistent fibroblast grafts in infarcted hearts. Cotransplantation of hESC-derived epicardial cells and cardiomyocytes doubled graft cardiomyocyte proliferation rates in vivo, resulting in 2.6-fold greater cardiac graft size and simultaneously augmenting graft and host vascularization. Notably, cotransplantation improved systolic function compared with hearts receiving either cardiomyocytes alone, epicardial cells alone or vehicle. The ability of epicardial cells to enhance cardiac graft size and function makes them a promising adjuvant therapeutic for cardiac repair.


Asunto(s)
Corazón/fisiología , Células Madre Embrionarias Humanas , Infarto del Miocardio/terapia , Miocitos Cardíacos , Regeneración , Animales , Embrión de Pollo , Regulación de la Expresión Génica , Humanos , Masculino , Ratas , Ratas Desnudas , Ratas Sprague-Dawley , Ingeniería de Tejidos
16.
Immunity ; 50(4): 1033-1042.e6, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926232

RESUMEN

Ancient organisms have a combined coagulation and immune system, and although links between inflammation and hemostasis exist in mammals, they are indirect and slower to act. Here we investigated direct links between mammalian immune and coagulation systems by examining cytokine proproteins for potential thrombin protease consensus sites. We found that interleukin (IL)-1α is directly activated by thrombin. Thrombin cleaved pro-IL-1α at a site perfectly conserved across disparate species, indicating functional importance. Surface pro-IL-1α on macrophages and activated platelets was cleaved and activated by thrombin, while tissue factor, a potent thrombin activator, colocalized with pro-IL-1α in the epidermis. Mice bearing a mutation in the IL-1α thrombin cleavage site (R114Q) exhibited defects in efficient wound healing and rapid thrombopoiesis after acute platelet loss. Thrombin-cleaved IL-1α was detected in humans during sepsis, pointing to the relevance of this pathway for normal physiology and the pathogenesis of inflammatory and thrombotic diseases.


Asunto(s)
Coagulación Sanguínea/fisiología , Sistema Inmunológico/inmunología , Interleucina-1alfa/fisiología , Trombina/fisiología , Inmunidad Adaptativa , Secuencia de Aminoácidos , Animales , Plaquetas/metabolismo , Humanos , Inmunidad Innata , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Queratinocitos/metabolismo , Macrófagos/metabolismo , Mamíferos/inmunología , Ratones , Precursores de Proteínas/metabolismo , Selección Genética , Sepsis/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trombopoyesis/inmunología , Cicatrización de Heridas/inmunología
17.
IEEE Trans Biomed Eng ; 66(8): 2269-2278, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30703001

RESUMEN

OBJECTIVE: Mechanical properties of healthy, aneurysmal, and atherosclerotic arterial tissues are essential for assessing the risk of lesion development and rupture. Strain energy density function (SEDF) has been widely used to describe these properties, where material constants of the SEDF are traditionally determined using the ordinary least square (OLS) method. However, the material constants derived using OLS are usually dependent on initial guesses. METHODS: To avoid such dependencies, Bayesian inference-based estimation was used to fit experimental stress-stretch curves of 312 tissue strips from 8 normal aortas, 19 aortic aneurysms, and 21 carotid atherosclerotic plaques to determine the constants, C1, D1, and D2 of the modified Mooney-Rivlin SEDF. RESULTS: Compared with OLS, material constants varied much less with prior in the Bayesian inference-based estimation. Moreover, fitted material constants differed amongst distinct tissue types. Atherosclerotic tissues associated with the biggest D2, an indicator of the rate of increase in stress during stretching, followed by aneurysmal tissues and those from normal aortas. Histological analyses showed that C1 and D2 were associated with elastin content and details of the collagen configuration, specifically, waviness and dispersion, in the structure. CONCLUSION: Bayesian inference-based estimation robustly determines material constants in the modified Mooney-Rivlin SEDF and these constants can reflect the inherent physiological and pathological features of the tissue structure. SIGNIFICANCE: This study suggested a robust procedure to determine the material constants in SEDF and demonstrated that the obtained constants can be used to characterize tissues from different types of lesions, while associating with their inherent microstructures.


Asunto(s)
Aorta , Aneurisma de la Aorta/fisiopatología , Aterosclerosis/fisiopatología , Modelos Cardiovasculares , Anciano , Aorta/fisiología , Aorta/fisiopatología , Teorema de Bayes , Fenómenos Biomecánicos/fisiología , Arterias Carótidas/fisiología , Arterias Carótidas/fisiopatología , Enfermedades de las Arterias Carótidas/fisiopatología , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Masculino , Ensayo de Materiales , Persona de Mediana Edad
18.
J Am Heart Assoc ; 7(22): e010321, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30571482

RESUMEN

Background The mechanism underlying the beneficial cardiovascular effects of the incretin GLP-1 (glucagon-like peptide 1) and its analogues in humans is elusive. We hypothesized that activating receptors located on vascular smooth muscle cells to induce either peripheral or coronary vasodilatation mediates the cardiovascular effect of GLP -1. Methods and Results Ten stable patients with angina awaiting left anterior descending artery stenting underwent forearm blood flow measurement using forearm plethysmography and post-percutaneous coronary intervention coronary blood flow measurement using a pressure-flow wire before and after peripheral GLP -1 administration. Coronary sinus and artery bloods were sampled for GLP -1 levels. A further 11 control patients received saline rather than GLP -1 in the coronary blood flow protocol. GLP -1 receptor (GLP-1R) expression was assessed by immunohistochemistry using a specific GLP -1R monoclonal antibody in human tissue to inform the physiological studies. There was no effect of GLP -1 on absolute forearm blood flow or forearm blood flow ratio after GLP -1, systemic hemodynamics were not affected, and no binding of GLP -1R monoclonal antibody was detected in vascular tissue. GLP -1 reduced resting coronary transit time (mean [ SD ], 0.87 [0.39] versus 0.63 [0.27] seconds; P=0.02) and basal microcirculatory resistance (mean [ SD ], 76.3 [37.9] versus 55.4 [30.4] mm Hg/s; P=0.02), whereas in controls, there was an increase in transit time (mean [SD], 0.48 [0.24] versus 0.83 [0.41] seconds; P<0.001) and basal microcirculatory resistance (mean [SD], 45.9 [34.7] versus 66.7 [37.2] mm Hg/s; P=0.02). GLP -1R monoclonal antibody binding was confirmed in ventricular tissue but not in vascular tissue, and transmyocardial GLP -1 extraction was observed. Conclusions GLP -1 causes coronary microvascular dilation and increased flow but does not influence peripheral tone. GLP -1R immunohistochemistry suggests that GLP -1 coronary vasodilatation is indirectly mediated by ventricular-coronary cross talk.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Anciano , Femenino , Humanos , Masculino , Microvasos/efectos de los fármacos , Persona de Mediana Edad , Pletismografía
19.
Sci Rep ; 8(1): 8550, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29867203

RESUMEN

Stiffening of the aorta is an important independent risk factor for myocardial infarction and stroke. Yet its genetics is complex and little is known about its molecular drivers. We have identified for the first time, tagSNPs in the genes for extracellular matrix proteins, aggrecan and fibulin-1, that modulate stiffness in young healthy adults. We confirmed SNP associations with ex vivo stiffness measurements and expression studies in human donor aortic tissues. Both aggrecan and fibulin-1 were found in the aortic wall, but with marked differences in the distribution and glycosylation of aggrecan reflecting loss of chondroitin-sulphate binding domains. These differences were age-dependent but the striking finding was the acceleration of this process in stiff versus elastic young aortas. These findings suggest that aggrecan and fibulin-1 have critical roles in determining the biomechanics of the aorta and their modification with age could underpin age-related aortic stiffening.


Asunto(s)
Agrecanos , Envejecimiento , Aorta/metabolismo , Proteínas de Unión al Calcio , Polimorfismo de Nucleótido Simple , Rigidez Vascular/fisiología , Adolescente , Adulto , Agrecanos/genética , Agrecanos/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Femenino , Humanos , Masculino
20.
Aging Cell ; 17(4): e12773, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29745022

RESUMEN

Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased ß-stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN-regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+ ) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase-gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.


Asunto(s)
Envejecimiento/genética , Variaciones en el Número de Copia de ADN/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Rigidez Vascular/genética , Animales , ADN Mitocondrial/metabolismo , Femenino , Masculino , Ratones , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA