Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Reproduction ; 167(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467105

RESUMEN

In brief: Congenital ZIKV infection promotes alarming effects on male offspring's reproductive biology. This study showed the presence of the ZIKV antigen in the testis parenchyma, decreased testosterone levels, and sperm abnormalities in male offspring born to infected mothers. Abstract: Infection with ZIKV during pregnancy is associated with fetal developmental problems. Although neurological issues are being explored more in experimental studies, limited research has focused on the reproductive health consequences for offspring born to infected mothers. In this context, this study aimed to assess the impact of ZIKV infection during pregnancy on the testes and sperm of adult male offspring. Female mice were intraperitoneally inoculated with a Brazil strain of ZIKV during the 5.5th day of embryonic gestation. The offspring were evaluated 12 weeks after birth to analyze cellular and molecular changes in the testes and sperm. A novel approach combining variable-angle spectroscopic ellipsometry and machine learning modeling was also introduced for sperm sample analysis. The study revealed the presence of ZIKV protein in the testis parenchyma of adult male offspring born to infected mothers. It was shown that the testes exhibited altered steroidogenesis and inflammatory mediators, in addition to significant issues with spermiogenesis that resulted in sperm with DNA fragmentation, head defects, and protamination failure. Additionally, sperm dielectric properties and artificial intelligence showed potential for rapid identification and classification of sperm samples from infected mice. These findings provide crucial insights into the reproductive risks for men born from ZIKV-infected pregnant women.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Adulto , Masculino , Humanos , Femenino , Embarazo , Animales , Ratones , Infección por el Virus Zika/complicaciones , Inteligencia Artificial , Semen , Biología
2.
Reprod Fertil ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331914

RESUMEN

Yellowish myotis present a seasonal reproduction, influenced by rainfall distribution, in which the testis mass, germ cell composition, and brown adipose tissue mass change along the reproductive stages. In the present study, tissue xenografts were performed in immunodeficient mice to investigate spermatogenesis development in a stable endocrine milieu and the possible androgenic role of brown adipose tissue. Forty-one adult male bats were captured in the Santuário do Caraça, Minas Gerais, Brazil. The gonads and brown adipose tissue were collected, weighed, and grafted under the mice's back skin. Mice biometric and hormonal data were evaluated after grafting, and the testis grafts and mice gonads were fixed for histological and immunohistochemical analyses. As a result, testis grafts from adult bats presented a continuous germ cell development in all reproductive phases, showing round spermatids in all testis tissues. Furthermore, testis fragments in the Rest stage presented elongating spermatids as the most advanced germ cell type in the seminiferous epithelium after seven months of grafting. These data indicated that yellowish myotis spermatogenesis could be continued (presenting a constant spermatogonial differentiation) in a stable endocrine milieu, as found in mice. In addition, the best spermatogenic development was achieved when testis fragments were transplanted at their lowest activity (Rest stage). Regarding the brown adipose tissue grafts, the adipose tissue consumption by mice increased seminal vesicle mass and testosterone serum levels. This data proved that the brown adipose tissue is related to testosterone synthesis, which may be critical in stimulating the differentiation of spermatogonia in yellowish myotis.

3.
Mol Cell Endocrinol ; 542: 111519, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34843900

RESUMEN

GATA-1 is a transcription factor from the GATA family, which features zinc fingers for DNA binding. This protein was initially identified as a crucial regulator of blood cell differentiation, but it is currently known that the Gata-1 gene expression is not limited to this system. Although the testis is also a site of significant GATA-1 expression, its role in testicular cells remains considerably unexplored. In the present study, we evaluated the testicular morphophysiology of adult ΔdblGATA mice with a mutation in the GATA-1 protein. Regarding testicular histology, GATA-1 mutant mice exhibited few changes in the seminiferous tubules, particularly in germ cells. A high proportion of differentiated spermatogonia, an increased number of apoptotic pre-leptotene spermatocytes (Caspase-3-positive), and a high frequency of sperm head defects were observed in ΔdblGATA mice. The main differences were observed in the intertubular compartment, as ΔdblGATA mice showed several morphofunctional changes in Leydig cells. Reduced volume, increased number and down-regulation of steroidogenic enzymes were observed in ΔdblGATA Leydig cells. Moreover, the mutant animal showed lower serum testosterone concentration and high LH levels. These results are consistent with the phenotypic and biometric data of mutant mice, i.e., shorter anogenital index and reduced accessory sexual gland weight. In conclusion, our findings suggest that GATA-1 protein is an important factor for germ cell differentiation as well as for the steroidogenic activity in the testis.


Asunto(s)
Espermatogonias , Testículo , Animales , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Mutación/genética , Túbulos Seminíferos , Espermatogonias/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
4.
J Virol ; 95(22): e0127621, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34495692

RESUMEN

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Asunto(s)
Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Pulmón/patología , Virus de la Hepatitis Murina/patogenicidad , Animales , Línea Celular , Contención de Riesgos Biológicos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Humanos , Inflamación , Hígado/patología , Hígado/virología , Pulmón/virología , Ratones , Virus de la Hepatitis Murina/efectos de los fármacos , Virus de la Hepatitis Murina/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Replicación Viral/efectos de los fármacos
5.
Theriogenology ; 174: 73-84, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34425303

RESUMEN

Yellowish myotis is a Neotropical vespertilionid bat that presents a seasonal reproduction. The sperm is produced in the Mature stage, stored in the Regressed stage and released in the Rest stage (mating period). Aiming to understand, for the first time, the relationship between testis and epididymis physiology in yellowish myotis reproduction, the spermatogenesis length, sperm production, and seminal parameters were herein evaluated. Fifty-one adult male bats were captured in Santuário do Caraça, Minas Gerais, Brazil. The gonads were collected in the Maturing and Mature stages for histomorphometric and immunohistochemical analyses, whereas the epididymis was evaluated in all reproductive stages for seminal studies. Our results demonstrated that the yellowish myotis spermatogenic process is fast, lasting 31.70 ± 0.15 days. Despite the low Sertoli cell efficiency (6.60 ± 1.23), the high numbers of Sertoli cells per testis enable an elevated sperm production in the Mature stage. The sperm concentration, vitality, and motility presented the highest values in the Regressed stage; however, in this period, an increased incidence of sperm morphological defects was detected. In the following period (Rest stage), a drastic reduction of defective sperm was observed, suggesting quality control of sperm before the mating period. Furthermore, the epididymis ability to maintain a long-term sperm-storage was observed in 26.7% of the bats in the Maturing stage. In summary, yellowish myotis presented a fast and high sperm production during the Mature stage. These sperms are stored and selected before mating period.


Asunto(s)
Quirópteros , Animales , Epidídimo , Masculino , Espermatogénesis , Espermatozoides , Testículo
6.
Anim Reprod ; 16(1): 81-92, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-33299481

RESUMEN

Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.

7.
Cell Tissue Res ; 382(3): 639-656, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32686003

RESUMEN

Myotis levis (yellowish myotis) is a small Neotropical insectivorous vespertilionid bat that provides valuable ecosystem services, such as control of disease vectors and agricultural pests. Aiming to describe the fluctuations of the reproductive organs throughout the year, the gonads and epididymis from 124 adult bats were histologically evaluated. These animals were captured in Santuário do Caraça, Minas Gerais, Brazil. After the initial screening, six bats per reproductive stage (in a representative month) had specific organs harvested for further investigation. The gonads, epididymis, accessory sex gland and brown adipose tissue were collected for biometric analyses. Furthermore, yellowish myotis testis was evaluated through histomorphometric and molecular assays, whereas blood samples were collected for hormonal analyses. The data were compared among the reproductive stages and correlated with rainfall distribution. As a result, we demonstrated that yellowish myotis presented a seasonal reproduction showing testis regression and rest, resembling the pattern exhibited by temperate-zone vespertilionid bats. During the Mature stage, after the peak of rainfall distribution, yellowish myotis testicles were fully developed for gamete production and maximum testosterone synthesis. These findings indicate a significant influence of this environmental factor on yellowish myotis reproduction. Following that, the accessory sex gland, brown adipose tissue and epididymis weights increased in the Regressed stage. The epididymis sperm storage occurred for at least 8 months and was observed in the Regressed, Rest and beginning of the Maturing stage. This reproductive fluctuation is interesting because the reactivation of the gonads coincided with the least amount of sperm in the epididymis.


Asunto(s)
Reproducción/fisiología , Espermatogénesis/fisiología , Animales , Quirópteros , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...