Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
One Health ; 18: 100718, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644969

RESUMEN

After mosquitoes, ticks are among the most important vector of pathogens of concern for animal and public health, but unless mosquitoes ticks remain attached to their hosts for long time periods providing an opportunity to analyse their role in the dispersal and dynamics of different zoonotic pathogens. Given their interest in public health it is important to understand which factors affect their incidence in different hosts and to stablish effective surveillance programs to determine the risk of transmission and spill-over of zoonotic pathogens. Taking benefit of a large network of volunteer ornithologists, we analysed the life-history traits associated to the presence of ticks using information of 620,609 individuals of 231 avian species. Bird phylogeny, locality and year explained a large amount of variance in tick prevalence. Non-colonial species non breeding in grasslands and non-spending the non-breeding season as gregarious groups or isolated individuals (e.g. thrushes, quails and finches) had the higher prevalence of ticks and appear as good candidates for zoonosis surveillance programs based on the analyses of ticks collected from wild birds. Ringers underestimated tick prevalence but can be considered as an important source of information of ticks for public and animal health surveillance programs if properly trained for the detection and collection of the different tick development phases.

2.
Emerg Microbes Infect ; 13(1): 2348510, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38686545

RESUMEN

West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.


Asunto(s)
Anticuerpos Antivirales , Estaciones del Año , Fiebre del Nilo Occidental , Virus del Nilo Occidental , España/epidemiología , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/aislamiento & purificación , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/virología , Fiebre del Nilo Occidental/veterinaria , Animales , Estudios Seroepidemiológicos , Humanos , Anticuerpos Antivirales/sangre , Brotes de Enfermedades , Temperatura
3.
Emerg Microbes Infect ; 13(1): 2343911, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38618930

RESUMEN

Malaria remains one of the most important infectious diseases globally due to its high incidence and mortality rates. The influx of infected cases from endemic to non-endemic malaria regions like Europe has resulted in a public health concern over sporadic local outbreaks. This is facilitated by the continued presence of competent Anopheles vectors in non-endemic countries.We modelled the potential distribution of the main malaria vector across Spain using the ensemble of eight modelling techniques based on environmental parameters and the Anopheles maculipennis s.l. presence/absence data collected from 2000 to 2020. We then combined this map with the number of imported malaria cases in each municipality to detect the geographic hot spots with a higher risk of local malaria transmission.The malaria vector occurred preferentially in irrigated lands characterized by warm climate conditions and moderate annual precipitation. Some areas surrounding irrigated lands in northern Spain (e.g. Zaragoza, Logroño), mainland areas (e.g. Madrid, Toledo) and in the South (e.g. Huelva), presented a significant likelihood of A. maculipennis s.l. occurrence, with a large overlap with the presence of imported cases of malaria.While the risk of malaria re-emergence in Spain is low, it is not evenly distributed throughout the country. The four recorded local cases of mosquito-borne transmission occurred in areas with a high overlap of imported cases and mosquito presence. Integrating mosquito distribution with human incidence cases provides an effective tool for the quantification of large-scale geographic variation in transmission risk and pinpointing priority areas for targeted surveillance and prevention.


Asunto(s)
Anopheles , Malaria , Mosquitos Vectores , Anopheles/parasitología , Animales , Malaria/epidemiología , Malaria/transmisión , España/epidemiología , Humanos , Mosquitos Vectores/parasitología , Enfermedades Transmisibles Importadas/epidemiología , Enfermedades Transmisibles Importadas/transmisión , Incidencia
4.
iScience ; 27(3): 109194, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433892

RESUMEN

Avian malaria parasites provide an important model for studying host-pathogen interactions, yet understanding their dynamics in vectors under natural conditions is limited. We investigated the effect of vector abundance, species richness and diversity, and habitat characteristics on avian Plasmodium prevalence and lineage richness in Culex pipiens across 45 urban, natural, and rural localities in southern Spain. Analyzing 16,574 mosquitoes grouped in 768 mosquito pools, 32.7% exhibited parasite presence. 13 different Plasmodium lineages were identified, with the lineage SYAT05 being the most commonly found. Parasite prevalence positively correlated with the distance to saltmarshes and rivers, but negatively with the distance to total water source. Parasite lineage diversity was higher in natural than in rural areas and positively correlated with mosquito species richness. These results emphasize the complex dynamics of avian Plasmodium in the wild, with habitat characteristics and vector community driving the parasite transmission by mosquito vectors.

5.
Sci Total Environ ; 922: 171303, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423334

RESUMEN

Urbanization is increasing worldwide, producing severe environmental impacts. Biodiversity is affected by the expansion of cities, with many species being unable to cope with the different human-induced stressors present in these landscapes. However, this knowledge is mainly based on research from taxa such as plants or vertebrates, while other organisms like protozoa have been less studied in this context. The impact of urbanization on the transmission of vector-borne pathogens in wildlife is still unclear despite its relevance for animal and human health. Here, we investigated whether cities are associated with changes in the prevalence and richness of lineages of three vector-borne protozoans (Plasmodium, Haemoproteus and Leucocytozoon) in Eurasian blackbirds (Turdus merula) from multiple urban and forest areas in Europe. Our results show important species-specific differences between these two habitat types. We found a significant lower prevalence of Leucocytozoon in urban birds compared to forest birds, but no differences for Plasmodium and Haemoproteus. Furthermore, the richness of parasite lineages in European cities was higher for Plasmodium but lower for Leucocytozoon than in forests. We also found one Plasmodium lineage exclusively from cities while another of Leucocytozoon was only found in forests suggesting a certain level of habitat specialization for these protozoan vectors. Overall, our findings show that cities provide contrasting opportunities for the transmission of different vector-borne pathogens and generate new scenarios for the interactions between hosts, vectors and parasites.


Asunto(s)
Enfermedades de las Aves , Haemosporida , Parásitos , Plasmodium , Pájaros Cantores , Animales , Humanos , Urbanización , Prevalencia , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/parasitología , Filogenia
6.
Behav Ecol ; 35(2): arae005, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38287939

RESUMEN

Intraspecific phenotypic variability is key to respond to environmental changes and anomalies. However, documenting the emergence of behavioral diversification in natural populations has remained elusive due to the difficulty of observing such a phenomenon at the right time and place. Here, we investigated how the emergence of a new trophic strategy in a population subjected to high fluctuations in the availability of its main trophic resource (migrating songbirds) affected the breeding performance, population structure, and population fitness of a specialized color polymorphic predator, the Eleonora's falcon from the Canary Islands. Using long-term data (2007-2022), we found that the exploitation of an alternative prey (a local petrel species) was associated with the growth of a previously residual falcon colony. Pairs in this colony laid earlier and raised more fledglings than in the other established colonies. The specialization on petrels increased over time, independently of annual fluctuations in prey availability. Importantly, however, the positive effect of petrel consumption on productivity was stronger in years with lower food availability. This trophic diversification was further associated with the genetically determined color morph, with dark individuals preying more frequently on petrels than pale ones, which might promote the long-term maintenance of genotypic and phenotypic diversity. We empirically demonstrate how the emergence of an alternative trophic strategy can buffer populations against harsh environmental fluctuations by stabilizing their productivity.

7.
J Hazard Mater ; 465: 133129, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056272

RESUMEN

Urbanization is associated with drastic shifts in biodiversity. While some species thrive in urban areas, the impact of inhabiting these human-altered environments on organism physiology remains understudied. We investigated how exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) affects the physiology of yellow-legged gulls (Larus michahellis) inhabiting a densely populated, industrialized city. We analyzed blood samples from 50 gulls (20 immatures and 30 adults) and assessed 27 physiological parameters and biomarkers related to xenobiotic protection, health, and feeding habits in these same individuals. We also tracked the movements of 25 gulls (15 immatures and 10 adults) to identify potential sources of persistent organic pollutants (POPs). Both adult and immature gulls primarily inhabited urban areas, followed by marine habitats. Immature gulls spent more time in freshwater, landfills, and agricultural areas. Bioaccumulated ΣPCB (median = 92.7 ng g-1 ww, 1.86-592) and ΣPBDE (median = 1.44 ng g-1 ww, 0.022-9.58) showed no significant differences between age and sex groups. Notably, immature males exhibited the highest correlations with POP concentrations, particularly with the activity of carboxylesterases (CEs), suggesting a higher sensitivity than adults. These findings highlight the potential of plasmatic CEs in immature yellow-legged gulls as effective tracers of POPs exposure and effects, offering insights into the anthropogenic impacts on urban biodiversity.


Asunto(s)
Charadriiformes , Contaminantes Ambientales , Bifenilos Policlorados , Humanos , Masculino , Animales , Contaminantes Orgánicos Persistentes , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Ecosistema , Éteres Difenilos Halogenados/análisis , Monitoreo del Ambiente
8.
Sci Total Environ ; 912: 168762, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38007121

RESUMEN

Wildlife human interactions within cities are becoming more common with consequences for pathogen transmission and human health. Large gulls are opportunistic feeders, adapted to coexist with humans in urban environments, and are potential vectors for spread and transmission of pathogens, including antimicrobial-resistant bacteria. We investigated the potential role that urban gulls play in the spread and dispersal of these bacteria. We analysed 129 faecal swabs from yellow-legged gulls (Larus michahellis) of different ages (56 adults and 73 immatures) during the breeding period from three years in the highly populated city of Barcelona (northeastern Spain). Thirteen individuals tested positive for the pathogenic bacteria (Escherichia coli, Listeria monocytogenes, Campylobacter jejuni), including antibiotic-resistant strains. We modelled the potential spatial spread of pathogens using the GPS trajectories of 58 yellow-legged gulls (23 adults, 35 immature individuals), which included the thirteen individuals that tested positive for pathogenic bacteria. By overlapping the spatially explicit pathogen dispersal maps with the distribution of urban installations sensitive at risk of possible pathogen spillover (e.g. elder and medical centres, markets, food industries, kindergartens, or public water sources), we identified potential areas at risk of pathogen spillover. Pathogens may be potentially spread to municipalities beyond Barcelona city borders. The results revealed that immature gulls dispersed pathogens over larger areas than adults (maximum dispersal distances of 167 km versus 53.2 km, respectively). Recreational urban water sources were the most sensitive habitats visited by GPS-tagged gulls that tested positive, followed by schools. Combining GPS movement data with pathogen analytics allows spatially explicit maps to be generated using a One Health approach that can help urban and public health management within large cities, such as Barcelona, and identify areas used by humans that are sensitive to pathogen spillover from gulls.


Asunto(s)
Charadriiformes , Animales , Humanos , Anciano , Charadriiformes/microbiología , Antibacterianos , Análisis Espacial , Escherichia coli , Agua
9.
J Anim Ecol ; 93(4): 393-405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38100230

RESUMEN

Comprehending symbiont abundance among host species is a major ecological endeavour, and the metabolic theory of ecology has been proposed to understand what constrains symbiont populations. We parameterized metabolic theory equations to investigate how bird species' body size and the body size of their feather mites relate to mite abundance according to four potential energy (uropygial gland size) and space constraints (wing area, total length of barbs and number of feather barbs). Predictions were compared with the empirical scaling of feather mite abundance across 106 passerine bird species (26,604 individual birds sampled), using phylogenetic modelling and quantile regression. Feather mite abundance was strongly constrained by host space (number of feather barbs) but not by energy. Moreover, feather mite species' body size was unrelated to the body size of their host species. We discuss the implications of our results for our understanding of the bird-feather mite system and for symbiont abundance in general.


Asunto(s)
Enfermedades de las Aves , Infestaciones por Ácaros , Ácaros , Passeriformes , Animales , Filogenia , Tamaño Corporal , Infestaciones por Ácaros/veterinaria
10.
Zoonoses Public Health ; 71(3): 274-280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38110840

RESUMEN

BACKGROUND AND OBJECTIVE: No autochthonous human cases of Japanese encephalitis (JE) have been reported to date in the European Union (EU). In this study, we assess the likelihood of Japanese encephalitis virus (JEV) introduction and transmission within the EU and propose outbreak response measures. RISK ASSESSMENT: Given the global geographical distribution of JEV, the probability of virus introduction into the EU is currently very low, with viremic bird migration being the most plausible pathway of introduction. However, this likelihood would significantly increase if the virus were to become established in the Middle East, Caucasus, Central Asia or Africa. Considering the environmental conditions that are expected to be conducive for virus circulation, there is a high likelihood of virus transmission within the EU after its introduction in environmentally suitable areas. The spread of the virus within the EU would likely occur through the movement of wild birds, pigs and mosquitoes. MITIGATION: To mitigate or potentially contain the emergence of JE in the EU, early detection of both human and animal cases will be crucial.


Asunto(s)
Culicidae , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Unión Europea , Aves
11.
Mol Ecol ; : e17240, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38108558

RESUMEN

Malaria is a mosquito-borne disease caused by protozoans of the genus Plasmodium that affects both humans and wildlife. The fitness consequences of infections by avian malaria are well known in birds, however, little information exists on its impact on mosquitoes. Here we study how Culex pipiens mosquitoes transcriptionally respond to infection by two different Plasmodium species, P. relictum and P. cathemerium, differing in their virulence (mortality rate) and transmissibility (parasite presence in exposed mosquitoes' saliva). We studied the mosquito response to the infection at three critical stages of parasite development: the formation of ookinetes at 24 h post-infection (hpi), the release of sporozoites into the hemocoel at 10 days post-infection (dpi), and the storage of sporozoites in the salivary glands at 21 dpi. For each time point, we characterized the gene expression of mosquitoes infected with each P. relictum and P. cathemerium and mosquitoes fed on an uninfected bird and, subsequently, compared their transcriptomic responses. Differential gene expression analysis showed that most transcriptomic changes occurred during the early infection stage (24 hpi), especially when comparing P. relictum and P. cathemerium-infected mosquitoes. Differentially expressed genes in mosquitoes infected with each species were related mainly to the metabolism of the immune response, trypsin, and other serine-proteases. We conclude that these differences in response may partly play a role in the differential virulence and transmissibility previously observed between P. relictum and P. cathemerium in Cx. pipiens.

12.
Viruses ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38140614

RESUMEN

West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021-2022 and Senegal in 2012-2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories.


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/epidemiología , España/epidemiología , Europa (Continente)/epidemiología
13.
Front Plant Sci ; 14: 1275622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023866

RESUMEN

Migratory waterbirds disperse a broad range of angiosperms by endozoochory (seed dispersal via gut passage), especially plants in coastal wetlands. However, there is no previous information about the capacity of seeds to remain in the seed bank after waterbird endozoochory, and very little about how wetland salinity can influence the effect of gut passage on germination. We collected seeds of Juncus subulatus (Juncaceae), Bolboschoenus maritimus, and Schoenoplectus litoralis (Cyperaceae) from Doñana marshes in Spain. All three species are considered to have physiological dormancy. After gut passage following ingestion by ducks, seeds were stored in darkness in solutions with six different conductivities (1, 2, 4, 8, 16, and 32 dSm-1), for periods of 1, 6, or 12 months to simulate presence in a seed bank. After storage, 1800 seeds of each plant species assigned to these treatments were subjected to germination tests in demineralized water, together with 1800 control seeds that had not been ingested before storage. All species germinated readily after storage, with or without gut passage beforehand. Storage time and salinity both had important effects on germinability and time to germination, which differed between control and ingested seeds, and between plant species. After ≥6 months, germinability of Cyperaceae was enhanced by gut passage (≤25% higher than control seeds) at some salinities. Only J. subulatus showed consistently lower germinability after passage (≤30%). Only B. maritimus showed consistently slower germination after passage (≤33%). Salinity effects were more complex after passage, but increasing salinity did not generally have a negative impact on germination of ingested seeds. When compared to additional seeds that had not been stored before germination tests, storage reduced germinability in J. subulatus (≤39% reduction), but increased it in B. maritimus (≤17%) and S. litoralis (≤46%). Seeds dispersed by waterbird endozoochory may be easily incorporated into wetland seed banks, where they can remain halotolerant and delay germination until conditions become suitable. This can benefit wetland plants by increasing rates of long-distance dispersal, gene flow, and establishment of new populations. Avian gut passage can have positive and species-specific effects on germination in plants with persistent seed banks and/or physiological dormancy.

14.
One Health ; 17: 100578, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38024263

RESUMEN

West Nile virus (WNV) is a re-emerging zoonotic pathogen with increasing incidence in Europe, producing a recent outbreak in 2020 in Spain with 77 human cases and eight fatalities. However, the factors explaining the observed changes in the incidence of WNV in Europe are not completely understood. Longitudinal monitoring of WNV in wild animals across Europe is a useful approach to understand the eco-epidemiology of WNV in the wild and the risk of spillover into humans. However, such studies are very scarce up to now. Here, we analysed the occurrence of WNV and Usutu virus (USUV) antibodies in 2102 samples collected between 2005 and 2020 from a population of feral horses in Doñana National Park. The prevalence of WNV antibodies varied between years, with a mean seroprevalence of 8.1% (range 0%-25%) and seasonally. Climate conditions including mean minimum annual temperatures and mean rainy days per year were positively correlated with WNV seroprevalence, while the annual rainfall was negatively. We also detected the highest incidence of seroconversions in 2020 coinciding with the human outbreak in southern Spain. Usutu virus-specific antibodies were detected in the horse population since 2011. The WNV outbreak in humans was preceded by a long period of increasing circulation of WNV among horses with a very high exposure in the year of the outbreak. These results highlight the utility of One Health approaches to better understand the transmission dynamics of zoonotics pathogens.

15.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946058

RESUMEN

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Asunto(s)
Neoplasias Hematológicas , Neoplasias Inducidas por Radiación , Exposición a la Radiación , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Dosis de Radiación , Neoplasias Inducidas por Radiación/epidemiología , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/patología , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/etiología , Exposición a la Radiación/efectos adversos , Tomografía Computarizada por Rayos X/efectos adversos
16.
Artículo en Inglés | MEDLINE | ID: mdl-37945465

RESUMEN

INTRODUCTION: The establishment of Aedes albopictus in new areas in Europe has changed the risk of local dengue transmission represented by imported human cases. The risk of transmission is determined by the distribution of travelers arriving from dengue-endemic areas and the distribution of Ae. albopictus as potential vectors of dengue in Spain. METHODS: Environmental, entomological, epidemiological, demographic, tourism and travel data were analyzed to produce a series of maps to represent: the distribution of Ae. albopictus across municipalities; the risk of expansion of Ae. albopictus based on a species distribution model; the calculated index of travelers from dengue-endemic areas (IDVZE) per province; the percentage contribution of each municipality to the total number of cases in Spain. The maps were then added using map algebra, to profile the spatial risk of autochthonous dengue in Spain at a municipal level from 2016 to 2018. RESULTS: Ae. albopictus was detected in 983 municipalities. The calculated IDVZE varied from 0.23 to 10.38, with the highest IDVZE observed in Madrid. The overall risk of autochthonous cases oscillated between 0.234 and 115, with the very high risk and high risk areas detected in the Mediterranean region, mainly in the Levantine coast and some parts of the Balearic Islands. Most of the interior of the peninsula was characterized as low risk. CONCLUSION: Prevention and control measures to mitigate the risk of autochthonous dengue should be prioritized for municipalities in the high risk areas integrating early detection of imported dengue cases and vector control.

17.
Pathogens ; 12(9)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764991

RESUMEN

Global change is an important driver of the increase in emerging infectious diseases in recent decades. In parallel, interest in nature has increased, and different citizen science platforms have been developed to record wildlife observations from the general public. Some of these platforms also allow registering the observations of dead or sick birds. Here, we test the utility of live, sick and dead observations of birds recorded on the platform Observation.org for the early detection of highly pathogenic avian influenza virus (HPAIV) outbreaks in the wild in Belgium and The Netherlands. There were no significant differences in the morbidity/mortality rate through Observation.org one to four weeks in advance. However, the results show that the HPAIV outbreaks officially reported by the World Organisation for Animal Health (WOAH) overlapped in time with sudden increases in the records of sick and dead birds in the wild. In addition, in two of the five main HPAIV outbreaks recorded between 2016 and 2021, wild Anseriformes mortality increased one to two months before outbreak declaration. Although we cannot exclude that this increase was related to other causes such as other infectious diseases, we propose that Observation.org is a useful nature platform to complement animal health surveillance in wild birds. We propose possible approaches to improve the utility of the platform for pathogen surveillance in wildlife and discuss the potential for HPAIV outbreak detection systems based on citizen science to complement current surveillance programs of health authorities.

18.
One Health ; 16: 100478, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363246

RESUMEN

Introduction/objective: West Nile virus (WNV) is one of the most widely distributed flaviviruses worldwide. It is considered an endemic and emerging pathogen in different areas of the Europe and Mediterranean countries (MR). Mosquitoes of the genus Culex spp. are the main vectors, and birds its main vertebrate hosts. It can occasionally infect mammals, including humans. Different environmental factors can influence its distribution and transmission through its effects on vector or host populations. Our objective was to determine environmental factors associated with changes in vector distribution and WNV transmission in Europe and MR. Material & methods: Systematic peer review of articles published between 2000 and 2020. We selected studies on WNV, and its vectors carried out in Europe and MR. The search included terms referring to climatic and environmental factors. Results: We included 65 studies, of which 21 (32%) were conducted in Italy. Culex spp. was studied in 26 papers (40%), humans in 19 papers (29%) and host animals (mainly horses) in 16 papers (25%), whereas bird reservoirs were addressed in 5 studies (8%). A significant positive relationship was observed between changes in temperature and precipitation patterns and the epidemiology of WNV, although contrasting results were found among studies. Other factors positively related to WNV dynamics were the normalized difference vegetation index (NDVI] and expansion of anthropized habitats. Conclusion: The epidemiology of WNV seems to be related to climatic factors that are changing globally due to ongoing climate change. Unfortunately, the complete zoonotic cycle was not analyzed in most papers, making it difficult to determine the independent impact of environment on the different components of the transmission cycle. Given the current expansion and endemicity of WNV in the area, it is important to adopt holistic approaches to understand WNV epidemiology and to improve WNV surveillance and control.

19.
One Health ; 17: 100585, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37359749

RESUMEN

West Nile virus (WNV) is a globally significant vector-borne disease that is primarily transmitted between birds and mosquitoes. Recently, there has been an increase in WNV in southern Europe, with new cases reported in more northern regions. Bird migration plays a crucial role in the introduction of WNV in distant areas. To better understand and address this complex issue, we adopted a One Health approach, integrating clinical, zoological, and ecological data. We analyzed the role of migratory birds in the Palaearctic-African region in the spread of WNV across Africa and Europe. We categorized bird species into breeding and wintering chorotypes based on their distribution during the breeding season in the Western Palaearctic and the wintering season in the Afrotropical region, respectively. By linking these chorotypes to the occurrence of WNV outbreaks in both continents throughout the annual bird migration cycle, we investigated the relationship between migratory patterns and virus spread. We demonstrate that WNV-risk areas are interconnected through the migration of birds. We identified a total of 61 species that potentially contribute to the intercontinental spread of the virus or its variants, as well as pinpointed high-risk areas for future outbreaks. This interdisciplinary approach, which considers the interconnectedness of animals, humans, and ecosystems, represents a pioneering effort to establish connections between zoonotic diseases across continents. The findings of our study can aid in anticipating the arrival of new WNV strains and predicting the occurrence of other re-emerging diseases. By incorporating various disciplines, we can enhance our understanding of these complex dynamics and provide valuable insights for proactive and comprehensive disease management strategies.

20.
Viruses ; 15(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851481

RESUMEN

Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. The local circulation of WNV in Spain has been known for decades, and since 2010, there have been regular outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in 2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic analyses. We also compared the obtained genomes with those sequenced from human samples obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and 2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in the future.


Asunto(s)
Culicidae , Virus del Nilo Occidental , Humanos , Animales , Caballos , Virus del Nilo Occidental/genética , Filogenia , España/epidemiología , Mosquitos Vectores , Genómica , Brotes de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...