Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(4): 5521-5528, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36651188

RESUMEN

Contact resistance and charge trapping are two key obstacles, often intertwined, that negatively impact on the performance of organic field-effect transistors (OFETs) by reducing the overall device mobility and provoking a nonideal behavior. Here, we expose organic semiconductor (OSC) thin films based on blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8) with polystyrene (PS) to (i) a CH3CN vapor annealing process, (ii) a doping I2/water procedure, and (iii) vapors of I2/CH3CN to simultaneously dope and anneal the films. After careful analysis of the OFET electrical characteristics and by performing local Kelvin probe force microscopy studies, we found that the vapor annealing process predominantly reduces interfacial shallow traps, while the chemical doping of the OSC film is responsible for the diminishment of deeper traps and promoting a significant reduction of the contact resistance. Remarkably, the devices treated with I2/CH3CN reveal ideal electrical characteristics with a low level of shallow/deep traps and a very high and almost gate-independent mobility. Hence, this work demonstrates the promising synergistic effects of performing simultaneously a solvent vapor annealing and doping procedure, which can lead to trap-free OSC films with negligible contact resistance problems.

2.
Nanoscale ; 15(1): 230-236, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36472089

RESUMEN

The deposition of organic semiconductors (OSCs) using solution shearing deposition techniques is highly appealing for device implementation. However, when using high deposition speeds, it is necessary to use very concentrated OSC solutions. The OSCs based on the family of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) have been shown to be excellent OSCs due to their high mobility and stability. However, their limited solubility hinders the processing of these materials at high speed. Here, we report the conditions to process alkylated DNTT and the S-shaped π-core derivative S-DNTT by bar-assisted meniscus shearing (BAMS) at high speed (i.e., 10 mm s-1). In all the cases, homogeneous thin films were successfully prepared, although we found that the gain in solubility achieved with the S-DNTT derivative strongly facilitated solution processing, achieving a field-effect mobility of 2.1 cm2 V-1 s-1, which is two orders of magnitude higher than the mobility found for the less soluble linear derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...