Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
F1000Res ; 7: 618, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30079242

RESUMEN

Background: Large protein aggregates, known as circulating immune complexes (CICs), are formed in biological fluids as a result of the development of the body's immune response to various provoking factors. The kinetic characteristics of the formation and removal of immune complexes (ICs), their physical parameters, the isotypic composition of immunoglobulins (Igs) and the antigenic component of the CICs may reflect certain aspects of certain pathological and metabolic processes taking place in humans and animals. The aim of this study is to assess the kinetic characteristics of the formation and removal of the CICs that form in blood after eating. We also analyze the changes in the isotypic composition of Igs of ICs that accompany this biological process in rodents and humans. Methods: We identified the CICs, which differed in size and class of Igs, using dynamic light scattering. To remove ICs from the plasma, we used immune-affinity sedimentation. Monoclonal antibodies for the Igs of different isotypes were added to the plasma samples to determine the isotypic composition of the ICs. Results: A large number of ICs were formed in the blood of rats and humans after eating (food CICs). In rats, food ICs are almost immediately filtered in the liver, without circulating in the bloodstream through the body. In humans, the level of food ICs in the blood increases for 3.5 h after ingestion, then within 7-8 h their gradual removal takes place. It was found that in the process of digestion in humans, the isotypic composition of Igs in the CICs changes and becomes more diverse. Conclusions: The molecular-cellular mechanisms of the formation and utilization of food CICs in humans and rodents do not match completely.

2.
PLoS One ; 12(9): e0185126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961258

RESUMEN

P53 protein is more frequently mutated in human tumours compared with the other proteins. While the majority of the p53 mutations, especially within its DNA-binding domain, lead to the loss of the wild-type function, there are accumulating data demonstrating that the p53 mutants gain tumour promoting activities; the latter triggers a revitalised interest in functional analysis of the p53 mutants. A systematic screening for p53 mutations in surgical materials from patients with glioma revealed a 378C>G mutation that creates a stop codon at the position of amino acid residue 126. The mutation eliminates the recognition site for the restriction endonuclease Sca I that allowed us to carry out RFLP analysis of DNA extracted from the clinical samples and suggests that this mutation is more frequent than is documented in the p53 databases. Both the ECV-304 and EJ cell lines, that probably originate from the bladder carcinoma T24 cell line, were confirmed to contain the homozygous 378C>G mutation but were shown to produce the p53 protein of expected full-length size detected by Western blotting. We provide evidence that the 378C>G mutation generates an alternative 3' splice site (ss) which is more often used instead of the authentic upstream 3' ss, driving the production of mRNA encoding the protein with the single amino acid deletion (p53ΔY126). Using endogenous expression, we demonstrated that the p53ΔY126 protein is nearly as active as the wild type protein in inducing the p21/Waf1 expression and apoptosis.


Asunto(s)
Empalme Alternativo , Apoptosis , Codón sin Sentido , Proteína p53 Supresora de Tumor/genética , Western Blotting , Línea Celular Tumoral , ADN Complementario/genética , Citometría de Flujo , Humanos , Polimorfismo de Longitud del Fragmento de Restricción
3.
Free Radic Res ; 50(8): 909-19, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27266720

RESUMEN

Testing of pregnant women reveals weakening of neutrophil-mediated effector functions, such as reactive oxygen species generation. This study provides data confirming the phenomenon, gained through application of the flow cytometry technique. Key factors influencing neutrophil functional activity in blood plasma of pregnant women have not been detected so far. At the same time, concentration of ceruloplasmin - a copper-containing glycoprotein - is known to increase in blood significantly during pregnancy. We observed the negative correlation between ceruloplasmin concentration in blood plasma of pregnant women and the intensity of respiratory burst of neutrophils. Fractionation of plasma using gel-filtration revealed that ceruloplasmin-containing fraction demonstrated suppression of the respiratory burst reaction. Partial elimination of ceruloplasmin from the blood of pregnant women, performed with the help of specific antibodies and followed by immunoprecipitation, leads to an increased respiratory burst reaction. On the contrary, addition of ceruloplasmin to blood samples of healthy donors noticeably decreases the respiratory burst reaction. The results presented prove that change in ceruloplasmin level in plasma is necessary and sufficient for modulating the ability of neutrophils to produce reactive oxygen species during pregnancy.


Asunto(s)
Ceruloplasmina/metabolismo , Neutrófilos/metabolismo , Estallido Respiratorio/fisiología , Femenino , Citometría de Flujo , Humanos , Embarazo
4.
Cell Commun Signal ; 11: 88, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24245560

RESUMEN

BACKGROUND: Exosomes are nano-sized vesicles of endocytic origin that are involved in cell-to-cell communication including shuttle RNA, mainly mRNA and microRNA. As exosomes naturally carry RNA between cells, these particles might be useful in gene cancer therapy to deliver therapeutic short interfering RNA (siRNA) to the target cells. Despite the promise of RNA interference (RNAi) for use in therapy, several technical obstacles must be overcome. Exogenous siRNA is prone to degradation, has a limited ability to cross cell membranes and may induce an immune response. Naturally occurring RNA carriers, such as exosomes, might provide an untapped source of effective delivery strategies. RESULTS: This study demonstrates that exosomes can deliver siRNA to recipient cells in vitro. The different strategies were used to introduce siRNAs into human exosomes of various origins. The delivery of fluorescently labeled siRNA via exosomes to cells was confirmed using confocal microscopy and flow cytometry. Two different siRNAs against RAD51 and RAD52 were used to transfect into the exosomes for therapeutic delivery into target cells. The exosome-delivered siRNAs were effective at causing post-transcriptional gene silencing in recipient cells. Moreover, the exosome-delivered siRNA against RAD51 was functional and caused the massive reproductive cell death of recipient cancer cells. CONCLUSIONS: The results strongly suggest that exosomes effectively delivered the siRNA into the target cells. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated in vitro by the strong knockdown of RAD51, a prospective therapeutic target for cancer cells. The results give an additional evidence of the ability to use human exosomes as vectors in cancer therapy, including RNAi-based gene therapy.


Asunto(s)
Exosomas , Técnicas de Transferencia de Gen , ARN Interferente Pequeño/administración & dosificación , Líquido Ascítico/citología , Línea Celular Tumoral , Humanos , Recombinasa Rad51/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...