Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(16): 13720-13728, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29608054

RESUMEN

Replacing the liquid electrolyte in conventional lithium-ion batteries with thin-film solid-state lithium-ion conductors is a promising approach for increasing energy density, lifetime, and safety. In particular, Li7La3Zr2O12 is appealing due to its high lithium-ion conductivity and wide electrochemical stability window. Further insights into thin-film processing of this material are required for its successful integration into solid-state batteries. In this work, we investigate the phase evolution of Li7-3 xGa xLa3Zr2O12 in thin films with various amounts of Li and Ga for stabilizing the cubic phase. Through this work, we gain valuable insights into the crystallization processes unique to thin films and are able to form dense Li7-3 xGa xLa3Zr2O12 layers stabilized in the cubic phase with high in-plane lithium-ion conductivities of up to 1.6 × 10-5 S cm-1 at 30 °C. We also note the formation of cubic Li7La3Zr2O12 at the relatively low temperature of 500 °C.

2.
Ultramicroscopy ; 160: 118-129, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26484792

RESUMEN

This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA