Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 26383-26397, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710501

RESUMEN

Here we demonstrate the results of investigating the damage threshold of a LiF crystal after irradiating it with a sequence of coherent femtosecond pulses using the European X-ray Free Electron Laser (EuXFEL). The laser fluxes on the crystal surface varied in the range ∼ 0.015-13 kJ/cm2 per pulse when irradiated with a sequence of 1-100 pulses (tpulse ∼ 20 fs, Eph = 9 keV). Analysis of the surface of the irradiated crystal using different reading systems allowed the damage areas and the topology of the craters formed to be accurately determined. It was found that the ablation threshold decreases with increasing number of X-ray pulses, while the depth of the formed craters increases non-linearly and reaches several hundred nanometers. The obtained results have been compared with data already available in the literature for nano- and picosecond pulses from lasers in the soft X-ray/VUV and optical ranges. A failure model of lithium fluoride is developed and verified with simulation of material damage under single-pulse irradiation. The obtained damage threshold is in reasonably good agreement with the experimentally measured one.

2.
Nat Commun ; 13(1): 6426, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307404

RESUMEN

Magnetic reconnection can occur when two plasmas, having anti-parallel components of the magnetic field, encounter each other. In the reconnection plane, the anti-parallel component of the field is annihilated and its energy released in the plasma. Here, we investigate through laboratory experiments the reconnection between two flux tubes that are not strictly anti-parallel. Compression of the anti-parallel component of the magnetic field is observed, as well as a decrease of the reconnection efficiency. Concomitantly, we observe delayed plasma heating and enhanced particle acceleration. Three-dimensional hybrid simulations support these observations and highlight the plasma heating inhibition and reconnection efficiency reduction for these obliquely oriented flux tubes.

3.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458968

RESUMEN

Wearable devices and smartphones that are used to monitor the activity and the state of the driver collect a lot of sensitive data such as audio, video, location and even health data. The analysis and processing of such data require observing the strict legal requirements for personal data security and privacy. The federated learning (FL) computation paradigm has been proposed as a privacy-preserving computational model that allows securing the privacy of the data owner. However, it still has no formal proof of privacy guarantees, and recent research showed that the attacks targeted both the model integrity and privacy of the data owners could be performed at all stages of the FL process. This paper focuses on the analysis of the privacy-preserving techniques adopted for FL and presents a comparative review and analysis of their implementations in the open-source FL frameworks. The authors evaluated their impact on the overall training process in terms of global model accuracy, training time and network traffic generated during the training process in order to assess their applicability to driver's state and behaviour monitoring. As the usage scenario, the authors considered the case of the driver's activity monitoring using the data from smartphone sensors. The experiments showed that the current implementation of the privacy-preserving techniques in open-source FL frameworks limits the practical application of FL to cross-silo settings.


Asunto(s)
Seguridad Computacional , Privacidad , Aprendizaje , Reconocimiento en Psicología , Tecnología
4.
Sci Rep ; 11(1): 8180, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854146

RESUMEN

We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10[Formula: see text]-10[Formula: see text] W/cm[Formula: see text]) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after [Formula: see text] ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only [Formula: see text] of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.

5.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383803

RESUMEN

The rapid development of Internet of Things (IoT) systems has led to the problem of managing and analyzing the large volumes of data that they generate. Traditional approaches that involve collection of data from IoT devices into one centralized repository for further analysis are not always applicable due to the large amount of collected data, the use of communication channels with limited bandwidth, security and privacy requirements, etc. Federated learning (FL) is an emerging approach that allows one to analyze data directly on data sources and to federate the results of each analysis to yield a result as traditional centralized data processing. FL is being actively developed, and currently, there are several open-source frameworks that implement it. This article presents a comparative review and analysis of the existing open-source FL frameworks, including their applicability in IoT systems. The authors evaluated the following features of the frameworks: ease of use and deployment, development, analysis capabilities, accuracy, and performance. Three different data sets were used in the experiments-two signal data sets of different volumes and one image data set. To model low-power IoT devices, computing nodes with small resources were defined in the testbed. The research results revealed FL frameworks that could be applied in the IoT systems now, but with certain restrictions on their use.

6.
Sci Adv ; 3(11): e1700982, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29109974

RESUMEN

Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...